Introduction to Logic for Computer Science

S. Arun-Kumar

Department of Computer Science and Engineering
Indian Institute of Technology

New Delhi, 110016
email: sak@Qcse.iitd.ernet.in

August 18, 1999

Contents

1 Introduction and Mathematical Preliminaries 5
1.1 Motivation for the Study of Logic 5
1.2 Sets e e e e e e e 6
1.3 Relations and Functions 8
1.4 Operations on Binary Relations 11
1.5 Ordering Relations 11
1.6 Partial Ordersand Trees 12
1.7 EXEercises o i i i e e e e e e e e e e e 12

Chapter 1

Introduction and Mathematical
Preliminaries

“Contrariwise”, continued Tweedledee, “if it was so, it might be, and if it were
so, it would be; but as it isn’t, it ain’t. That’s logic!”

Lewis Carroll, " Through the Looking Glass”

1.1 Motivation for the Study of Logic

In the early years of this century symbolic or formal logic became quite popular with philoso-
phers and mathematicians because they were interested in the concept of what constitutes
a correct proof in mathematics. Over the centuries mathematicians had pronounced various
mathematical proofs as correct which were later disproved by other mathematicians. The
whole concept of logic then hinged upon what is a correct argument as opposed to a wrong
(or faulty) one. This has been amply illustrated by the number of so-called proofs that
have come up for Euclid’s parallel postulate and for Fermat’s last theorem. There have
invariably been “bugs” (a term popularized by computer scientists for the faults in a pro-
gram) which were often very hard to detect and it was necessary therefore to find infallible
methods of proof. For centuries (dating back at least to Plato and Aristotle) no rigorous
formulation was attempted to capture the notion of a correct argument which would guide
the development of all mathematics.

The early logicians of the nineteenth and twentieth centuries hoped to establish formal
logic as a foundation for mathematics, though that never really happened. But mathematics
does rest on one firm foundation, namely set theory. But Set theory itself has been expressed
in first order logic. needed to be answered were questions relating to the automation or
mechanizability of proofs. These questions are very relevant and important the development
of present-day computer science and form the basis of many developments in automatic
theorem proving David Hilbert asked the important question, as to whether all mathematics,
if reduced to statements of symbolic logic, can be derived by a machine., be reduced to the
manipulation of statements in symbolic logic., it enabled mathematicians to point out why
an alleged proof is wrong, or where in the proof the reasoning has been faulty. A large
part of the credit for this achievement must go to the fact that by symbolizing arguments
rather than writing them out in some natural language (which is fraught with ambiguity),
checking the correctness of a proof becomes a much more viable task. Of course, trying
to symbolize the whole of mathematics could be disastrous as then it would become quite

5

impossible to even read and understand mathematics, since what is presented usually as a
one page proof could run into several pages. But at least in principle it can be done.

Since the latter half of the twentieth century logic has been used in computer science for
various purposes ranging from program specification and verification to theorem-proving.
Initially its use was restricted to merely specifying programs and reasoning about their
implementations. This is exemplified in the some fairly elegant research on the development
of correct programs using first-order logic in such calculi such as the weakest-precondition
calculus of Dijkstra. A method called Hoare Logic which combines first-order logic sentences
and program phrases into a specification and reasoning mechanism is also quite useful in
the development of small programs. Logic in this form has also been used to specify the
meanings of some programming languages, notably Pascal.

The close link between logic as a formal system and computer-based theorem proving is
proving to be very useful especially where there are a large number of cases (following certain
patterns) to be analyzed and where quite often there are routine proof techniques available
which are more easily and accurately performed by theorem-provers than by humans. The
case of the four-colour theorem which until fairly recently remained a unproved conjecture
is an instance of how human ingenuity and creativity may be used to divide up proof into
a few thousand cases and where machines may be used to perform routine checks on the
individual cases. Another use of computers in theorem-proving or model-checking is the
verification of the design of large circuits before a chip is fabricated. Analyzing circuits
with a billion transistors in them is at best error-prone and at worst a drudgery that few
humans would like to do. Such analysis and results are best performed by machines using
theorem proving techniques or model-checking techniques.

A powerful programming paradigm called declarative programming has evolved since
the late seventies and has found several applications in computer science and artificial
intelligence. Most programmers using this logical paradigm use a language called Prolog
which is an implemented form of logic'. More recently computer scientists are working on
a form of logic called constraint logic programming.

In the rest of this chapter we will discuss sets, relations, functions. Though most
of these topics are covered in the high school curriculum this section also establishes the
notational conventions that will be used throughout. Even a confident reader may wish to
browse this section to get familiar with the notation.

1.2 Sets

A set is a collection of distinct objects. The class of CS253 is a set. So is the group of all
first year students at the IITD. We will use the notation {a, b, c} to denote the collection of
the objects a, b and c¢. The elements in a set are not ordered in any fashion. Thus the set
{a,b,c} is the same as the set {b, a,c}. Two sets are equal if they contain exactly the same
elements.

We can describe a set either by enumerating all the elements of the set or by stating
the properties that uniquely characterize the elements of the set. Thus, the set of all
even positive integers not larger than 10 can be described either as S = {2,4,6,8,10} or,
equivalently, as S = {z | z is an even positive integer not larger than 10}

A set can have another set as one of its elements. For example, the set A = {{a, b, c},d}
contains two elements {a,b,c} and d; and the first element is itself a set. We will use the

'actually a subset of logic called Horn-clause logic

notation z € S to denote that z is an element of (or belongs to) the set S.

A set A is a subset of another set B, denoted as A C B, if x € B whenever z € A.

An empty set is one which contains no elements and we will denote it with the symbol
(). For example, let S be the set of all students who fail this course. S might turn out to be
empty (hopefully; if everybody studies hard). By definition, the empty set () is a subset of
all sets. We will also assume an Universe of discourse U, and every set that we will consider
is a subset of U. Thus we have

1. f C A for any set A
2. A CU for any set A

The union of two sets A and B, denoted A U B, is the set whose elements are exactly
the elements of either A or B (or both). The intersection of two sets A and B, denoted
AN B, is the set whose elements are exactly the elements that belong to both A and B.
The difference of B from the A, denoted A — B, is the set of all elements of A that do not
belong to B. The complement of A, denoted ~ A is the difference of A from the universe
U. Thus, we have

1. AUB={z|(z€ A)or (z€B)}
2. ANB={z|(z € A) and (z € B)}
3. A-B={z|(z € A) and (z ¢ B)}
4. ~A=U—-A

We also have the following named identities that hold for all sets A, B and C.
Basic properties of set union.

1. AuUB)UC=AU(BUCQC) Associativity
2. AUgp=A Identity
3. AuU=U Zero
4. AUB=BUA Commutativity
5 AUA=A Idempotence

Basic properties of set intersection

1. ANB)NC=ANn(BNCQC) Associativity
2. AnU=A Identity
3. AnNgp=¢ Zero
4. ADB=BnNA Commutativity
5. ANA=A Idempotence

Other properties

1. AN(BUC)=(AnB)U(ANC) Distributivity of N over U

2. AUBNC)=(AUB)N(AUCQC) Distributivity of U over N

3. ~(AUB)=~AN~B De Morgan’s law ~ U
4. ~(ANB)=~AU~B De Morgan’s law ~ N
5. AN(~AUB)=ANB Absorption U
6. AU(~NANB)=AUB Absorption N

The reader is encouraged to come up with properties of set difference and the comple-
mentation operations.
We will use the following notation to denote some standard sets:

The empty set: ()

The Universe: U

The Power set of a set A: 24 is the set of all subsets of the set A.
The set of Natural Numbers: ? N={0,1,2,...}

The set of positive integers: P = {1,2,3,...}

The set of integers: Z={... ,-2,-1,0,1,2,...}

The set of real numbers: R

The Boolean set: B = {false, true}

1.3 Relations and Functions

The Cartesian product of two sets A and B, denoted by A x B, is the set of all ordered
pairs (a,b) such that a € A and b € B. Thus,

Ax B={(a,b)|a€ Aand be B}

Given another set C' we may form the following different kinds of cartesian products
(which are not at all the same!).

(Ax B)xC={((a,b),c) |]a€ Ab€ B and c € C}

AXx (BxC)={(a,(bc)) |a€c Abe Band ce C}

AxBxC={(a,bc)|acAbe B and ce C}

*We will include 0 in the set of Natural numbers. After all, it is quite natural to score a 0 in an
examination

The last cartesian product gives the construction of tuples. Elements of the set A; x
Ay x -+ x A, for given sets Ay, Ao, ..., A, are called ordered n-tuples.
A™ is the set of all ordered n-tuples (a1, a2,... ,a,) such that a; € A for all 7. i.e.,
A"=AxAx---xA

n times

A binary relation R from A to B is a subset of A x B. It is a characterization of the
intuitive notion that some of the elements of A are related to some of the elements of B.
We also use the notation aRb to mean (a,b) € R. When A and B are the same set, we say
R is a binary relation on A. Familiar binary relations from N to N are =, #, <, <, >, >.
Thus the elements of the set {(0,0),(0,1),(0,2),...,(1,1),(1,2),... } are all members of
the relation < which is a subset of N x N.

In general, an n-ary relation among the sets A;, As,..., A, is a subset of the set
A X Ay x -+ X A,

Definition 1.1 Let R C A x B be a binary relation from A to B. Then

1. For any set A’ C A the image of A" under R is R(A") ={b € B | aRb for some a €
A'};

2. For every subset B' C B the pre-image under R is R (B') = {a € A | aRb for someb €
B'};

3. R is onto (or surjective) with respect to A and B if R(A) = B;

4. R is total with respect to A and B if R™1(B) = A;

5. R is one-to-one (or injective) with respect to A and B if for every b € B there is at
most one a € A such that (a,b) € R.

6. R is a partial function from A to B, usually denoted R : A — B, if for every a € A
there is at most one b € B such that (a,b) € R;

7. R is a total function from A to B, usually denoted R : A — B if R is a partial
function from A to B and is total.

8. R is a one-to-one correspondence (or bijection) if it is an injective and surjective total
function.

Example 1.1 The following are some examples of familiar binary relations along with their
properties.

1. The < relation on N is a relation from N to N which is total and onto. That is, both
the image and pre-image of < under N are N itself. What are image and the pre-image
respectively of the relation <?

2. The binary relation which associates key sequences from a computer keyboard with their
respective 8-bit ASCII codes is an example of a relation which is total and injective.

3. The binary relation which associates 7-bit ASCII codes with the corresponding ASCII
character set is an example of a bijection.

We may equivalently define partial and total functions as follows.

Definition 1.2 A function (or a total function) f from A to B is a binary relation f C
A X B such that for every element a € A there is a unique element b € B so that (a,b) € f
(usually denoted f(a) = b and sometimes f : a — b). We will use the notation R: A — B
to denote a function R from A to B. The set A is called the domain of the function R and
the set B is called the co-domain of the function R. The range of a function R: A — B
is the set {b € B | for some a € A, R(a) = b}. A partial function f from A to B, denoted
f A — B is a total function from some subset of A to the set B. Clearly every total
function is also a partial function.

The word “function” unless otherwise specified is taken to mean a “total function”.
Some familiar examples of partial and total functions are

1. + and * (addition and multiplication) are total functions of the type f : N x N — N
2. — (subtraction) is a partial function of the type f: N x N < N.

3. div and mod are total functions of the type f : N X P — N. If a = ¢ x b+ r such that
0 <r<banda,b,q,r € N then the functions div and mod are defined as div(a,b) = ¢
and mod(a,b) = r. We will often write these binary functions as a b, a div b, a mod b
etc. Note that div and mod are also partial functions of the type f : N x N — N.

4. The binary relations =, #, <, <, >, > may also be thought of as functions of the
type f: Nx N — B where B = {false, true}.

Definition 1.3 Given a set A, a list (or finite sequence) of length n > 0 of elements from
A, denoted @, is a (total) function of the type @ : {1,2,... ,n} — A. We normally denote a
list of length n by [a1,as, ... ,a,] Note that the empty list, denoted [, is also such a function
[]: 0 — A and denotes a sequence of length 0.

It is quite clear that there exists a simple bijection from the set A™ (which is the set
of all n-tuples of elements from the set A) and the set of all lists of length n of elements
from A. We will often identify the two as being the same set even though they are actually
different by definition®. The set of all lists of elements from A is denoted A*, where

A =[] A
n>0
The set of all non-empty lists of elements from A is denoted A1 and is defined as
At =[] A
n>0

An infinite sequence of elements from A is a total function from N to A. The set of all such
infinite sequences is denoted AY.

3In a programming language like ML, the difference is evident from the notation and the constructor
operations for tuples and lists

1.4 Operations on Binary Relations
In this section we will consider various operations on binary relations.

Definition 1.4 1. Given a set A, the identity relation over A, denoted T4, is the set
{{a,a) | a € A}.

2. Given a binary relation R from A to B, the converse of R, denoted R~ is the relation
from B to A defined as R~ = {(b,a) | (a,b) € R}.

3. Given binary relations R C A X B and S C B x C, the composition of R with S is
denoted R o S and defined as R oS = {(a,c) | aRb and bSc, for some b € B}.

Note that unlike in the case of functions (where for any function f : A — B its inverse
f~!: B — A may not always be defined), the converse of a relation is always defined. Given
functions (whether partial or total) f : A < B and g : B — C, their composition is the
function fog: A < C defined simply as the relational composition of the two functions
regarded as binary relations. Hence (f o g)(a) = g(f(a)).

1.5 Ordering Relations
We may define the n-fold composition of a relation R on a set A by induction as follows

RO =174

R =R"60 R

We may combine these n-fold compositions to yield the reflezive-transitive closure of R,
denoted R, as the relation

R*:URn

n>0

Sometimes it is also useful to consider merely the transitive closure R of R which is defined
as

RY = JR"
n>0

Definition 1.5 A binary relation R on a set A is
1. reflexive if and only if for every a € A, aRa;
irreflexive if and only if for no a € A, aRa;
symmetric if and only if for all a,b € A, aRb implies bRa ;
asymmetric if and only if aRb implies (b,a) & R;

antisymmetric if and only if aRb and bRa implies a = b;

S S e e

transitive if and only if for all a,b,c € A, aRb and bRc implies aRc;

7. connected if and only if for all a,b € A, if a # b then aRb or bRa.

Given any relation R on a set A, it is easy to see that R* is both reflexive and transitive.

Example 1.2 1. The edge relation on an undirected graph is an example of a symmetric

relation.
In any directed acyclic graph the edge relation is asymmetric.

Consider the reachability relation on a directed graph defined as: A pair of vertices
(A, B) is in the reachability relation, if either A = B or there exists a vertex C' such
that both (A,C) and (C,B) are in the reachability relation. The reachability relation
is the reflexive transitive closure of the edge relation.

The reachability relation on directed graphs is also an example of a relation that need
not be either symmetric or asymmetric. The relation need not be antisymmetric either.

1.6 Partial Orders and Trees

Definition 1.6 A binary relation R on a set A is

1.

NS G e

1.7

a preorder if it is reflexive and transitive;

a strict preorder if it is irreflexive and transitive;

a partial order if it is an antisymmetric preorder;

a strict partial order if it is irreflexive, asymmetric and transitive;
a linear order* if it is a connected partial order.

a strict linear order if it is an irreflezive linear order.

an equivalence if it is reflexive, symmetric and transitive.

Exercises

. Prove that for any binary relations R and S on a set A,

(a) (R~ =

(b) (RNS)™! R—1m8—1
() (RUS) '=R tust
(@ R-8) =R -5

. Prove that the composition operation on relations is associative. Give an example of

the composition of relations to show that relational composition is not commutative.

. Prove that for any binary relations R, R’ from A to B and S, &' from B to C, if

RCR and SC S then RoSC R o0&

4also called total order

4. Prove that relational composition satisfies the following distributive laws for relations,
where RC Ax Band S, 7 C B x C.

(a) Ro(SUT)=(RoS)U(RoT)

(b) Ro(SNT)=(RoS)N(RoT)

() Ro(S—T)=(Ro8S)—(RoT)
5. Prove that for RCAx Band SC B x C, (RoS) ! =(S1o (R
6. Show that a relation R on a set A is

(a
b

) reflexive if and only if Z4 C R;

(b) irreflexive if and only if Zy N R = 0;

(c) symmetric if and only if R = R 1;

(d)

(e) antisymmetric if and only if RNR™! C Tu;

(f) transitive if and only if R o R C R;

(g) connected if and only if (A x A) — T4 CRUR™!

asymmetric if and only if RNR ! = 0;

7. Consider any reflexive relation R on a set A. Does it necessarily follow that A is not
asymmetric? If R is asymmetric does it necessarily follow that it is irreflexive?

8. Find the fallacy in the proof of the following alleged theorem.
Theorem 1.1 A symmetric and transitive binary relation is an equivalence.

Proof: Let R be a symmetric and transitive binary relation on a set A. For any
pair of elements (a,b) € R, it follows from symmetry that (b,a) € R. Further by
transitivity, it follows that if both (a,b),(b,a) € R then (b,b) € R. Hence R is
reflexive. Since it is also symmetric and transitive, R is an equivalence. O

9. Prove that there exists a bijection

(a) from N? to N,
(b) from N" to N, for any n > 0,
(c) from Nx to N.

10. Can you prove that there exists no bijection between N¥ and N?
11. Show that for any relation R, its reflexive-transitive closure R* is a preorder.

12. Prove that for any relation R on a set A,

(a) S=R*U(R*) L and T = (RUR !)* are both equivalence relations.
(b) Prove or disprove®: S = T.

Sthat is, give an example of a relation R such that for S and 7 constructed as above, the given statement
is contradicted

13.

14.

Given any preorder R on a set A, prove that the kernel of the preorder defined as
R NR™! is an equivalence relation.

Consider any preorder R on a set A. We give a construction of another relation as
follows. For each a € A, let [a]g be the set defined as [a]gr = {b € A | aRb and bRa}.
Now consider the set B = {[a]gr | a € A}. Let S be a relation on B such that for
every a,b € A, [a]grS[b]r if and only if aRb. Prove that S is a partial order on the
set B.

