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1 Propositional formulas

The language of propositional calculus is a set of strings referred to as
propositional formulas or simply formulas. These strings are generated by
a context-free grammar. Let us first see what we mean by a context-free
grammar.

1.1 Context-free grammars

A context-free grammar is a set of rules for generating a string. Every string
in the language is generated from one distinguished symbol. To generate the
strings we have two kinds of rules. The first kind of rule is of the form:

A ::= A1 A2 · · · An (1)

This means that an occurrence of the symbol A can be replaced with
the string of symbols A1 A2 · · · An.

The other kind of rule is of the form:

A ::= A1 | A2 | · · · | An (2)

This means that an occurrence of the symbol A can be replaced with
either of A1 or A2 or so forth till An.

∗These notes are based on the book Mathematical Logic for Computer Science

by M. Ben-Ari (Prentice-Hall International (UK), 1993.)
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The symbols which appear on the left side of a rule are known as non-
terminals and the symbols which never occur on the left side (i.e. occur only
on the right side) are known as terminals.

To generate a string we always start with a particular non-terminal and
keep applying the rules till we get a string with no non-terminals left in it.

1.2 Grammars for propositional formulas

Definition 1.1 Given a set of arbitrary symbols P called the set of atomic
propositions or atoms, a formula of the propositional calculus is a string
generated from the non-terminal formula by the following grammar:

formula ::= p for any p ∈ P

formula ::= ¬ formula

formula ::= formula op formula

op ::= ∨ | ∧ | ⇒ | ≡ | ⇐

Each formula in the propositional calculus has a derivation from this
grammar. In other words given a propositional formula A, there is a se-
quence of steps to get to it from formula:

(formula =)A0 → A1 → A2 → · · ·An−1 → An(= A)

Each step Ai → Ai+1 is the expansion of an instance of either formula

or op according to one of the rules of the grammar. Let us call this sequence
of steps the derivation of A.

Definition 1.2 A formula B is said to be a subformula of A if there is
a intermediate step Ai in the derivation of A with a single occurrence of
formula from which B is derived. Let us call this occurrence of formula

the root symbol for B. B is said to be a proper subformula of A if B is not
the same as A.

2 Boolean interpretations

In order to interpret propositional formulas in terms of boolean logic,we
extend Definition 1.1 to include the following rule:

formula ::= T | F
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A v(A1) v(A2) v(A)

T T

F F

¬A1 T F
¬A2 F T

A1 ∨A2 F F F
A1 ∨A2 o.w.1 o.w. T

A1 ∧A2 T T T
A1 ∧A2 o.w. o.w. F

A1 ⇒ A2 T F F
A1 ⇒ A2 o.w. o.w. T

A1 ⇐ A2 F T F
A1 ⇐ A2 o.w. o.w. T

A1 ≡ A2 T T T
A1 ≡ A2 F F T
A1 ≡ A2 o.w. o.w. F

Figure 1: Truth value assignment to formulas.

Definition 2.1 Let A be a propositional formula and let {p1, p2, . . . , pn}
be the set of atoms appearing in A. An interpretation for A is a function
v : {p1, p2, . . . , pn} → {T,F}, that is v assigns one of the truth values T or
F to each atom. Further, v assigns T or F to A according to the inductive
definition in Figure 1.

2.1 Logical equivalence and substitution

Definition 2.2 Given two formulas A1, A2, if v(A1) = v(A2) for all inter-
pretations, then A1 is (logically) equivalent to A2, denoted A1 ↔ A2.

Note that ↔ is not a symbol of the propositional calculus and should
never appear in any string which claims to be a propositional formula. It
is just our shorthand for denoting logical equivalence. This logical equiva-
lence is not the same as the equivalence denoted by ≡ in the propositional.
However, they are closely related:

Theorem 2.3 A1 ↔ A2 if and only if A1 ≡ A2 evaluates to T in every
interpretation.

1otherwise
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Now let us turn to substitution. Before proceeding recall Definition 1.2
where we talked about subformulas.

Definition 2.4 If A is a subformula of B and A′ is any formula, then B ′,the
substitution of A′ for A in B, denoted B{A← A′}, is the formula obtained
by deriving A′ from the root symbol of A in the derivation of B.

The following theorem holds for substitutions

Theorem 2.5 Let A be a subformula of B and let A′ be a formula such
that A↔ A′. Then B ↔ B{A← A′}.

The proof is by induction and is left as an exercise.

2.2 Satisfiability, validity and consequence

Definition 2.6 A propositional formula A is satisfiable if its value is T in
some interpretation. A satisfying interpretation is called a model for A. A

is valid if its value is T in all interpretations. This is denoted |= A.

Definition 2.7 A propositional formula is unsatisfiable or contradictory if
its value is F in all interpretations. A formula is falsifiable if it is not valid,
i.e. its value is F in some interpretation.

From these definitions we can conclude that all valid formulas are satis-
fiable although there may be satisfiable formulas which are not valid. And
we have that:

Theorem 2.8 A is valid if and only if ¬A is unsatisfiable. A is satisfiable
if and only if ¬A is falsifiable.

We extend the definition of satisfiability to sets of formulas as follows:

Definition 2.9 A set of formulas U = {A1, A2, . . . , An} is (mutually) sat-
isfiable if there exists an interpretation v (for all the atoms in U) such that
v(A1) = v(A2) = · · · = v(An) = T . The satisfying interpretation is called a
model of U . U is unsatisfiable if for every interpretation there exists an i

such that v(Ai) = F.

Definition 2.10 Let U be a set of formulas and A a formula. If A evaluates
to T in every model of U , then A is a logical consequence of U , or A is
logically implied by U , denoted U |= A.
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Note that A need not always be true. It only needs to be true in the
interpretations which model U . Also, it is not necessary that every model
of A is a model of U . As with ↔, the symbol |= is also not a symbol of the
propositional calculus, but just of the meta-language we use to talk about
it. It is however related to the symbol “⇒” by the following theorem:

Theorem 2.11 If U = {A1, . . . , An} the U |= A if and only if |= A1 ∧ · · · ∧
An ⇒ A.

Further we can show that:

Theorem 2.12 If U |= A then U ∪ {B} |= A.

Theorem 2.13 If U |= A and B is valid then U \ {B} |= A.

The proof of these theorems is left as an exercise.
The notion of logical consequence is a central concept in the foundations

of mathematics. Mathematics proceeds by making certain assumptions and
then determining what are the logical consequences of those assumptions.
The formal definition of a mathematical theory is:

Definition 2.14 Let T (U) = {A | U |= A}. T (U) is called the theory of
U and the elements of T (U) are called the theorems of U . The elements of
U are called the axioms of T (U).

3 Deductive proofs: Hilbert systems

Instead of working with semantic concepts like satisfiability and validity, we
present a purely syntactical method of arriving at new formulas. We start
with a set of axioms and a set of rules for deducing new formulas from the
axioms. The new formulas are called theorems and the description of the
deduction is called the proof. A system such as this one is referred to as
a deductive proof system. We will discuss a Hilbert-style proof system here
which has many axioms and one rule.

3.1 Definition

Now let us define a Hilbert system H for the propositional calculus.
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Definition 3.1 For any formulas A,B,C, the following formulas are ax-
ioms in H:

` (A⇒ (B ⇒ A)) Axiom 1
` (A⇒ (B ⇒ C))⇒ ((A⇒ B)⇒ (A⇒ C)) Axiom 2
` (¬B ⇒ ¬A)⇒ (A⇒ B) Axiom3

The notation ` means that the formula is provable. Any axiom is prov-
able (this can be verified explicitly.) Note that each of the axioms listed
above are schematic i.e. each one of them gives rise to an infinite set of
axioms by (uniformly) substituting some other formulas for A, B and C.
For example

(p ∨ q)⇒ ((p⇒ p)⇒ (p ∨ q))

is an instance of Axiom 1 where A is replaced by p∨ q and B is replaced
by p⇒ p.

The axioms in themselves have limited use, so we add a rule of inference:

Definition 3.2 For any formulas A,B, the rule of inference in H is

` A ` A⇒ B

` B

This rule is called modus ponens (Latin for “mode that affirms”), MP
for short.

We now demonstrate the method of proof in the Hilbert system by prov-
ing that for any formula A, ` A⇒ A.

Theorem 3.3 ` A⇒ A.

Proof.
1. ` A⇒ ((A⇒ A)⇒ A)⇒

((A⇒ (A⇒ A))⇒ (A⇒ A)) Axiom 2
2. ` A⇒ ((A⇒ A)⇒ A) Axiom 1
3. ` ((A⇒ (A⇒ A))⇒ (A⇒ A)) MP 1, 2
4. ` A⇒ (A⇒ A) Axiom 1
5. ` A⇒ A MP 3, 4

ut

Proofs like this which use only the axioms and modus ponens can some-
times be lengthy and tricky so we augment our armoury with a set of derived
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rules. For each derived rule we have to show that it is sound i.e. that a proof
using this rule can be replaced by a proof using only the axioms and modus
ponens. This prevents us from augmenting H with unprovable formulas.

We now state some derived rules. The proofs of the soundness of these
are left as exercises.

Deduction rule

U ∪ {A} ` B

U ` A⇒ B

Contrapositive rule

` ¬B ⇒ ¬A

` A⇒ B

Transitivity rule

U ` A⇒ B U ` B ⇒ C

` A⇒ C

Exchange of antecedent rule

U ` A⇒ (B ⇒ C)

U ` B ⇒ (A⇒ C)

Double negation rule

` ¬¬A

A

We conclude these notes by remarking that the Hilbert system is sound
and complete. We state these facts formally:

Theorem 3.4 (Soundness) If A is provable in the Hilbert system i.e. if
` A then A is satisfiable i.e. |= A.

Theorem 3.5 (Completeness) If A is satisfiable i.e. if |= A then A is
provable in the Hilbert system i.e. ` A.
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