2 Set Theory and Complexity

For many areas of mathematics a long process can usually be traced in which ideas evolve until
an ultimate flash of inspiration, often by a number of mathematicians almost simultaneously,
produces a discovery of major importance. Set theory however is rather different. Its basis is
the creation of one person, Georg Cantor. In his seminal 1874 paper Cantor observes different
kinds of infinity. Before this, orders of infinity did not exist but all infinite collections were
considered “the same size”. Cantor showed that this is not true. In particular, he showed that
the cardinality of the set of real numbers is larger than the cardinality of the set of natural
numbers. We will repeat his proof here.

2.1 Infinite sets

Recall that the cardinality of a set is the number of members it contains. When S is an infinite
set, |S| will be an infinite number. The cardinality of some infinite set is called a transfinite
number or transfinite cardinal.

Two sets can be put into one-to-one correspondence if and only if their members can be
paired off such that each member of the first set has exactly one counterpart in the second set,
and each member of the second set has exactly one counterpart in the first set, or formally,
there is a bijective mapping from one to another. If sets A and B can be put into one-to-one
correspondence, then we say A ~ B.

We say that the cardinality of a set A is at least as large as the cardinality of set B, or
|A| > |B]J, if and only if some subset of A and the whole of B can be put into one-to-one
correspondence. Or equivalently, |A| > |B] if and only if there is a surjective mapping from A
to B. A and B are defined to have the same cardinality, or |A| = |B|, if and only if |A| > |B|
and |B| > |A|. It is not difficult to check that with these definitions “=" forms an equivalence
relation and “>” forms an order. Furthermore, it is easy to prove the following theorem.

Theorem 2.1 Let A and B be arbitrary sets. If A ~ B then |A| = |B|.

The most important sets are

e IN=1{1,2,3,4,...}: set of natural numbers

o Z={...,-2,-1,0,1,2,...}: set of integers

o Q={z/y: v € Z and y € IN}: set of rational numbers
o IR: set of real numbers

Given a set of numbers S, S; denotes the set of all positive numbers (i.e. > 0) in S, and S_
denotes the set of all negative numbers (i.e. <0) in S.
It is tempting to conclude that

IN| < |Z| < |Q| < |IR] .

However, we will show that this is not true.

Theorem 2.2 |IN| = |Z|.

Proof. In order to show that [IN| > |Z| consider the mapping f : IN — Z with f(z) =
(—=1)* - |z/2]. f is surjective, because for every y € Z, z = 2 - |y| + (|y| — v)/(2ly|) (ify # 0
and otherwise z = 1) fulfills f(x) = y. Using the mapping g : Z — IN with g(z) = 1+ |z|, it is
straightforward to see that also |Z| > |IN|. Thus, we must have |IN| = |Z|. O

Theorem 2.3 |Z| = |Q|.

Proof. Obviously, @ ~ Z x IN. Using the mapping f : Z x IN — Z with f(z,y) = =z, it
follows that |Q| > |Z|. Hence, it remains to show that |Z| > |Q|. The following table illustrates
Cantor’s method to obtain this inequality.

Numerators
1 2 3 4

1]1/1 2/1 3/1 4/1
Denomi- 2 (1/2 2/2 3/2 4/2
nators 311/3 2/3 3/3 4/3

4

1/4 2/4 3/4 4/4

Obviously, every positive rational number can be found in this table. We can enumerate
all these numbers by moving diagonally through the table: 1/1, 2/1, 1/2, 3/1, 2/2, 1/3,
Assigning 1/1 to the value 1, 2/1 to the value 2, 1/2 to the value 3, and so on, we obtain a
surjective mapping ¢ from Z, to Q,. Using the same strategy for the mapping from Z_ to Q_
and mapping 0 to 0 we arrive at a surjective mapping from Z to Q. Hence, |Z| = |Q|. O

Since equality is transitive, Theorems 2.2 and 2.3 immediately yield the following result.

Corollary 2.4 |IN| = |Q|.

A generalization of the enumeration technique in the proof of Theorem 2.3 also yields the
following result.

Theorem 2.5 For every k € IN, |IN| = |IN¥|.

In the light of these results, it might be tempting to believe now that all infinite sets are of
the same cardinality. However, the next two theorems show that this is not true.

Theorem 2.6 |IR| = |2N].

Proof. First we show that [IR| > |2N]|. Given a number z € IR, let b(x) be the binary
representation of |z| — [|z]], i.e. |z| — ||z]] = X;>1 bi(x)/2". Furthermore, given a (possibly
infinite) binary string w, let S,, € 2N be the set that contains exactly those natural numbers 4
with w; = 1 (w; represents the ith digit in w). Because all sets S € 2N have a unique binary

string representing it and every binary string can be represented as a unique real number (by
changing the basis from 2 to 10), f : IR — 2" with f(z) = Sy is a surjective mapping.

It remains to show that |2N| > [IR|. In order to obtain a surjective mapping from 2V to IR,
we fist transform a set S € 2N into a binary string w(S) in a way that the ith digit of w(S) is
1 if and only if 4 € S. Next, we transform a binary string w into a real number z,, in a way
that w; encodes the sign of z, all w; with even ¢ encode the value of = left from the decimal
point, and all w; with odd 7 > 1 encode the value of = right from the decimal point. Since these
transformations ensure that every real number can be represented as a unique binary string and
every binary string can be represented as a unique subset of IN, g(S) = z,(s) is a mapping that
is surjective on IR. O

Theorem 2.7 |IN| < |2N].

Proof. We give a negative proof and assume that there is a surjective mapping from IN to 2.
In this case, fix any of these mappings. Let this hypothetical mapping be represented by the
leftmost column of the following table (that is, number 7 is mapped to set S;).

Is the number in the set? natural numbers
1 2 3 4

S1 yes no yes no
So no yes no yes
S yes yes mno 1o

Since every row ¢ of “yeses” and “noes” uniquely determines set S;, we can read any row of
“yeses” and “noes” as a code for a particular set of natural numbers.

Now look at the diagonal formed by the “yeses” and “noes” in bold face. Turn any “yes”
along the diagonal into a “no” and vice versa. The resulting infinite string is demonstrably
different from every string listed on the table, because for every row i it differs from the string
in this row at least at position 7. But this means that the set represented by the negation of the
diagonal has not been assigned to any of the natural numbers. This contradicts our assumption
that we exhaustively listed all the sets of natural numbers. Therefore, our assumption that the
selected mapping is surjective is false, and there is no surjective mapping from IN to 2N. Hence,
IIN| < [2IN]. O

The method used in the proof above is called diagonalization and has been used in many
other contexts to prove important results. We will come back to it later.
Combining Theorem 2.6 and Theorem 2.7, we obtain together with the previous theorems
that
IN] = [Z| = Q| < [IR|.

Moreover, Theorems 2.5 and 2.7 imply that for every k € IN, [IN*| < | U;»q INY|.

One may ask whether there is a set S with |IN| < [S| < |IR|. This was actually the first
problem on David Hilbert’s famous 1900 list of important unsolved problems in mathematics.
The continuum hypothesis asserts that there is no such set S. In 1938, Godel showed that the

continuum hypothesis cannot be disproved from the axioms of Zermelo-Fraenkel (ZF) set theory
(the closest thing we have to “standard” set theory). Finally, in 1963 Paul Cohen showed that
the continuum hypothesis also cannot be proved from the ZF axioms. Thus, the continuum
hypothesis is undecidable in ZF.

One can generalize Theorem 2.7 to the following result (this will be an assignment).

Theorem 2.8 For every set A it holds that |A] < |24].

Theorem 2.8 implies there is an infinite series of transfinite cardinals. These cardinals are
denoted by the hebrew letter aleph with subscripts numbered 0,1,2,.... |IN| is defined as Alephy
and |IR| is defined as Aleph;. |IN| was chosen to represent the “smallest” infinite set, because it
can be shown that every infinite set has a cardinality that is at least as large as |IN|.

2.2 Paradoxes in set theory

Cantor continued to publish a six part treatise on set theory from the years 1879 to 1884. This
work appears in Mathematische Annalen and it was a brave move by the editor to publish the
work despite a growing opposition to Cantor’s ideas. The leading figure in the opposition was
Kronecker who was an extremely influential figure in the world of mathematics at that time.
However, even Cantor had his problems with his new theory. He is believed to be the first that
discovered paradoxes in the set theory, although the first documented paradox is from 1897,
published by Cesare Burali-Forti. In 1899 Cantor discovered a different paradox that arises
from the set of all sets. What is the cardinality of the set of all sets? Clearly, it must be the
greatest possible cardinal. Yet, as we showed in the previous section, the cardinal of the set of
all subsets of a set always has a greater cardinal than the set itself. It began to look as if the
criticism of Kronecker might be at least partially right, since the extension of the set concept
too far seemed to be producing the paradoxes. The “ultimate” paradox was found by Russel in
1902 (and independently by Zermelo). It simply uses the set

A={X: X is not a member of X} .

Russel then asked: Is A an element of A? Both the assumption that A is a member of A and
A is not a member of A lead to a contradiction. The set construction itself appears to give a
paradox. So what went wrong?

First of all, when defining A, we implicitly assumed that A exists. Hence, the paradox simply
represents a proof via contradiction that A cannot exist! However, there seems to be no problem
with the complement of A, namely

B ={X: X is a member of X} .

So is set theory not closed under complement? To solve the problem, let us specify the domain
of the X, for instance
B={X €IN: X is a member of X} .

In this case, obviously B = (). Hence,
A={X €IN: X is not a member of X} =IN.

Now, check the paradox again:

e AcA Y 4 ¢ A: this argument is not valid any more, because A is not a member of A
(resp. IN € IN).

e AZ A “oaea A ¢ A is true, but since A ¢ IN, it cannot be concluded from this that
A € A (notice that only the elements X € IN can be members of A!).

Thus, once we specify the domain of the X, we can nicely resolve the paradox. It also reveals
that A can never be part of the domain from which the X are chosen (replacing IN by any other
domain yields the same result as for IN). Hence, if X can be an arbitrary set, then A cannot
exist!

Some mathematicians did not like the fact of being able to define sets that cannot exist.
This caused on the one hand the attempt to axiomatize set theory in a way that prevents the
occurance of paradoxes and on the other hand the rejection of proofs via contradiction by a
group of mathematicians (which are called the “constructivists”). The attempt to axiomatize
set theory actually failed (and it is known today why it had to fail). Although paradoxes may
seem strange when confronted with them for the first time, they are actually not unique to set
theory. Define, for instance, x to be the largest natural number. Obviously, x cannot exist,
because = + 1 is always a number that is larger than z. Thus, we can also define non-existing
objects in number theory.

2.3 Consequences for complexity theory

Before we use our knowledge in set theory to prove results in the area of complexity, we start
with some basic properties of recursive and recursively enumerable languages.

Properties of recursive and recursively enumerable languages

We start with two lemmas.
Lemma 2.9 The complement of a recursive language s recursive.

Proof. Suppose that L is recursive. Then there is a Turing machine M that decides it.
Reversing the answers of M, we arrive at a Turing machine that decides L. Hence, L is also
recursive. O

Lemma 2.10 If a language L and its complement L are both recursively enumerable, then L
(and also L) is recursive.

Proof. Let M; be the Turing machine that accepts L and M, be the Turing machine that
accepts L. We construct out of M; and M, a Turing machine M that decides L in the following
way.

Given an input x, M simulates simultaneously M, started on x and M, started on z. If M,
accepts x, M accepts x and halts. If M, accepts x, M halts without accepting x.

Obviously, z must be either in L or in L. That is, the only two cases that can happen are
that x is accepted by M; and not by Ms, or that x is accepted by M, and not by M;. Thus, M

will always either accept or reject, but will never do both. Furthermore, in both cases M halts.
Since M accepts L, M therefore decides L. O

The proof of this theorem uses a concept we have not explicitly shown previously: that a
Turing machine can simulate another Turing machine. We just give an intuition here why this
is true. Obviously, it is easy to write an algorithm that simulates any given Turing machine:
given the encoding of a Turing machine, the algorithm creates a data structure for its finite
state control and the tape and then simulates the Turing machine step by step. Since every
algorithm (based on known computational models) can be simulated by a Turing machine, there
must also be a Turing machine that can simulate any given Turing machine (for more detailed
information, please consult the book by Hopcroft and Ullman).

Let L and L be a pair of complementary languages. Then the two previous lemmas imply
that either

1. both L and L are recursive,
2. neither L nor L are recursively enumerable, or

3. one of L and L is recursively enumerable but not recursive; the other is not recursively
enumerable.

Obviously, languages exist for case 1. The other two cases will be studied below.
We conclude the section about basic properties with the following lemma.

Lemma 2.11 The union of two recursive languages is recursive.

Proof. Let L; and Ly be recursive languages. Furthermore, let M; be the TM that decides L,
and M, be the TM that decides L,. We construct out of M; and M, a Turing machine M for
Ly U Ly in the following way:

Given some input x, M first simulates M, started on x. If M; accepts, also M accepts.
Otherwise, M simulates M, started on x. If My accepts, also M accepts. Otherwise M halts
without accepting.

Going through all cases, it can be seen that M accepts exactly those inputs x with z € LiUL,.
Furthermore, since M; and M, halt for all inputs, also M halts for all inputs. Hence, M decides
LU L. O

Similar results can be shown for the intersection and other basic set operations. Thus,
recursive languages are closed under basic set operations. (Assignment: show that there are
basic set operations (negation!) for which this does NOT holds for r.e. languages!)

The limits of computability

In the following, let £ be the set of all languages, L£,. be the set of all recursively enumerable
languages, and L, be the set of all recursive languages. A fundamental question has been,
whether £,.. = £ or not. Using our results from set theory, it will turn out to be quite easy to
answer.

We start with fixing a representation for £. Recall that every decision problem can be
represented as a language L C {0,1}* (L contains all binary encodings of the inputs that have

6

the answer “yes”). Hence, the set of all possible decision problems can be represented as 2{0.1}",
Using a suitable binary encoding strategy, every Turing machine can be uniquely represented
as a finite binary string. In the following, we denote the binary encoding of a Turing machine
M by (M). Let M C {0,1}* denote the set of all binary strings that represent encodings of
Turing machines. Then the mapping f : M — L, with f({(M)) = L(M) is surjective. Hence,
IM| > |L,.|. Furthermore, [{0,1}*| > |M]|, because a subset of {0,1}* can certainly be brought
into one-to-one correspondance with M (recall the original definition of “>"). Now observe
that according to Theorem 2.8 we have |2{%1}"| > [{0,1}*|. Combining all the inequalities, we
obtain [2{®"| > |L,.| and therefore |£| > |L,.|. What we actually showed by this is that
there cannot be a surjective mapping from L,. to £ (because otherwise we could construct
a surjective mapping from {0,1}* to 2{%}" contradicting Theorem 2.8). Hence, the set of
recursively enumerable languages cannot cover the set of all possible languages. Or in other
words:

Theorem 2.12 There is a decision problem that does not have a Turing machine that accepts
it.

Hence, there are non-TM computable decision problems resp. non-recursively enumerable
languages. The recursively enumerable languages are therefore a proper subset of the set of all
languages.

Next we study the relationship between recursive and recursively enumerable languages.
Consider the following language:

Ly ={(M): M started with (M) does not accept} .

Note that L, exists and is a language (otherwise the next theorem would be trivial!). Similar
to Russel’s paradox in set theory, we can show the following result.

Lemma 2.13 L, is not recursive.

Proof. Suppose on the contrary that Ly is recursive. Then there would be a Turing machine
M that decides Ly. What would M do when started with itself? We distinguish between two
cases.

1. M accepts (M): then, according to the definition of Ly, M does not accept (M).
2. M does not accept (M): then, according to the definition of L4, M accepts (M).

Since for both cases we arrive at a contradiction, our assumption that there is a Turing machine
that decides Ly must be false. O

Combining Lemma 2.13 and Lemma 2.9, we obtain the following result.

Corollary 2.14 L, is not recursive.

Note that L, is defined as

Ld - {0, 1}* - Ld
= {z € {0,1}*: =z is not an encoding of a TM} U
{{M) : M started with (M) accepts} .

We prove now the following theorem.
Theorem 2.15 L, is recursively enumerable.

Proof. The Turing machine M that accepts Ly works as follows. First, it checks whether the
input z is an encoding of a Turing machine. If not, M accepts. Otherwise, assume that x is the
encoding of Turing machine M'. Then M simulates M’ started with x. If M’ accepts, then also
M accepts. Obviously, M accepts exactly those inputs z with z € Ly. Hence, Ly is recursively
enumerable. O

Corollary 2.14 and Theorem 2.15 imply that there is a language that is recursively enumerable
but not recursive. Hence, the set of recursive languages is a proper subset of the set of recur-
sively enumerable languages. Furthermore, combining Corollary 2.14 and Theorem 2.15 with
Lemma 2.10, we obtain that L, is not only non-recursive, but also non-recursively enumerable.

To summarize the results we obtained so far, we have

L. CL,.CL.

Furthermore, we explicitly constructed a language that is non-recursive but recursively enumer-
able and a language that is non-recursively enumerable. Are there also languages L where both
L and L are non-recursively enumerable? The next theorem shows that the answer is “yes”.

Theorem 2.16 There is a language L for which both L and L are not recursively enumerable.

Proof. In order to prove the theorem, we use Cantor’s diagonalization method. Recall that
the set of all languages is 2{%'}" and that the set of all binary encodings of Turing machines is
equal to M C {0, 1}*. Now, consider the two sets M x {0,1} and L,.. = {L € 20" : L e L,
or L € L,e}. In words, L,.. contains the set of all languages L for which either L or L is
recursively enumerable. Obviously, the mapping f : M x {0,1} — L,¢ with f({M)c) = L(M)
if ¢ = 0 and L(M) otherwise is surjective. Hence, |M x{0,1}| > |£,¢.|. Furthermore, [{0,1}*| >
|IM x {0,1}|, because a subset of {0,1}* can obviously brought into one-to-one correspondance
with M x {0,1}. Since [2{%1}"| > |{0,1}*|, we conclude that |[2{®1"| > |£,..|. In other words,
there can be no surjective mapping from L,.. to £. Hence, there must be languages L for which
neither L nor L are recursively enumerable. O

Oracle computations

One is tempted to ask what would happen if a certain undecidable problem were decidable?
Could we then compute everything? To answer the question we must be careful. If we start
out by assuming that some undecidable problem is decidable, we have a contradictory set of

assumptions and may conclude anything. We avoid this problem by defining a Turing machine
with an oracle.

Let O be a language, i.e. O C {0,1}*. A Turing machine with oracle O is a Turing machine
with three special states: g7, g,, and ¢,. The state ¢» is used to ask whether a string is in the
set O. When the Turing machine enters state ¢; it requests an answer to the question: “Is the
string of nonblank symbols to the right of the tape head in O7?” The answer is supplied by
having the state of the Turing machine change on the next move to one of the two states ¢, or
Gn, depending on whether the answer is yes or no. The computation continues normally until
the next time ¢, is entered, when the “oracle” answers another question.

Observe that if O is a recursive set, then the oracle can be simulated by another Turing
machine, and the set accepted by the Turing machine with oracle O is always recursively enu-
merable. On the other hand, if O is not a recursive set and an oracle is available to supply the
correct answer, then the Turing machine with oracle O may be able to accept a set that is not
recursively enumerable. We denote a Turing machine M with oracle O be M©. A set L is called
recursively enumerable with respect to O if L = L(M©) for some Turing machine M. A set L is
recursive with respect to O if L = L(M©) for some Turing machine M© that always halts. Two
oracles are equivalent if each is recursive in the other.

Given some oracle O, let L£E, be the set of all languages that are recursively enumerable with
respect to O. Then we can show the following theorem.

Theorem 2.17 For every oracle O, LS C L.

Proof. Obviously, £2 C £. Thus, it remains to prove that there is a language that is not in
£O.

Consider some fixed oracle O. Let us extend the alphabet for the encoding of a Turing
machine from {0,1} to {0,1,¢2,¢y,¢,}. This alphabet is used in a way that every Turing
machine M is encoded in the standard way up to the states ¢-, g,, and gy, for which the new
symbols are used. Let M® C {0,1,¢s,qy,¢,}* be the set of all possible encodings of Turing
machines using or not using oracle O. Obviously, the function f: M — L£E with f((M©)) =
L(MPO) is surjective. Hence, IM°| > |£Z|. Furthermore, since M° C {0,1,¢2,qy,q.}", we
have [{0,1, ¢, q,,qn}*| > |M®|. Since {0,1, ¢, q,,q.}* =~ {000,001,100,101,110}* C {0,1}*,
it also holds that |[{0,1}*| > [{0,1,¢2,qy,¢.}*|- Because |2{®"| > |{0,1}*], it follows that
12{017| > |£9], and therefore there must be languages that are not in £, O

Theorem 2.17 also holds for multiple oracles. Hence, any finite number of oracles is still not
enough to ensure that all languages can be accepted.

2.4 References

e P. Suber. A crash course in the mathematics of infinite sets. In the St. John’s Review
XLIV, 2, pp. 35-59, 1998. See also http://www.earlham.edu/~peters/writing/infapp.htm.

e J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages, and Com-
putation. Addison Wesley, Reading, 1979.

