
Logic Programming and
Learning

Lecture Schedule

1. Propositional Logic Programming

2. First-order Logic Programming

3. Computations and Answers

4. Introduction to Model Theory

5. Introduction to Proof Theory

6. Generality Orderings

7. Abduction and Justification

8. Search and Redundancy

9. ILP Implementation

10. ILP Experimental Method

11. Revision Class

Symbolic Logic as a computer
language

2 stages in software development

1. Specification

– usually not computer executable

– correct

2. Implementation

– computer executable

– correct

– efficient

Logic programming is about writing spec-
ifications in symbolic logic and executing
them directly on a computer

Clauses

Statements of the form p1 ∨ p2 . . . ← q1 ∧
q2 . . . are called clauses

p1 ∨ p2 . . . is sometimes called the head

of the clause, and q1 ∧ q2 . . . the body

If the head has exactly 1 proposition with-

out a ∼, and the body does not have any ∼
symbols, then the clause is called a definite

clause. Thus:

Clause Definite clause?
p ← q ∧ r

√

p ∨ q ← r ∧ s ×
p ← q∧ ∼ r ×

p ←
√

First-order logic: alphabet

Constant symbols. Name specific objects. Start

with a lower-case letter (peter, mcmxii etc.)

Function symbols. Name a functional relation-

ship between objects. Start with a lower-

case letter (sin,cos, + etc.)

Variable symbols. Stand for objects or func-

tions without naming them explicitly. Start

with an upper-case letter (X, Y etc.)

Predicate symbols. Name a relation on the

world of objects. Start with a lower-case

letter (son, ≤ etc.)

First-order logic: terms, atoms
and quantifiers

Terms

– a constant, variable or functional ex-

pression (a function applied to a tuple

of terms)

Expression Term?
peter

√

X
√

log(X)
√

son(peter, peter) ×
log(son(peter, peter)) ×
sin(log(cos(X/2)))

√

Atoms

– predicate symbol applied to a tuple of

terms (son(spock, sarek))

Arity of function or predicate symbol is the

number of terms that each is applied to.

Thus, in f(a, f(b, Y, Z), q(r(X))), the out-

ermost f has arity 1, the inner f has arity

3, q, r have arity 1

– By convention, function and predicate

symbols are denoted by Name/Arity

Quantifiers

∀ means “for all”. It is a way of stating

something about all objects in the world

without enumerating them. For exam-

ple, ∀X likes(steve, X): steve likes every-

one

∃ means “there exists”. It is a way of

stating the existence of some object in

the world without explicitly identifying

it. For example, ∃X likes(steve, X): steve

likes someone

Full Datalog: variables, constants
and recursion

Consider the predecessor relation, namely,
all ordered tuples < X, Y > s.t. X is an an-
cestor of Y . This set will include Y ’s par-
ents, Y ’s grandparents, Y ’s grandparents’
parents, etc.

pred(X, Y) ← parent(X, Y)
pred(X, Z) ← parent(X, Y), parent(Y, Z)
pred(X, Z) ← parent(X, Y 1), parent(Y 1, Y 2), parent(Y 2, Z)
. . .

Variables and constants are not enough:
we need recursion

∀X, Z X is a predecessor of Z if
1. X is a parent of Z; or
2. X is a parent of some Y , and Y is a predecessor of Z

The predecessor relation is thus:

pred(X, Y) ← parent(X, Y)
pred(X, Z) ← parent(X, Y), pred(Y, Z)

Datalog is not expressive enough

To express arithmetic operations, lists of

objects, etc. it is not enough to simply

allow variables and constants as terms

– We will need function symbols

Consider Peano’s postulates for the set of

natural numbers N

1. The constant 0 is in N

2. if X is in N then s(X) is in N

3. There are no other elements in N

4. There is no X in N s.t. s(X) = 0

5. There are no X, Y in N s.t. s(X) = s(Y)

and X 6= Y

We can write a definite clause definition

for enumerating the elements of N

– 1 constant symbol, 1 unary function sym-

bol

natural(0) ←
natural(s(X)) ← natural(X)

– They are generated by asking:

natural(N)?

Predicates + Variables +
Constants + Functions

Prolog

Computations and answers

Executing definite-clause definitions can some-

times lead to non-termination (“infinite loops”)

or even unsound behaviour (recall the id-

iosyncratic behaviour of not/1)

How are logic programs executed?

1. Execution of propositional logic programs

2. Execution of programs without recur-

sion or negation

3. Execution of programs with recursion

but no negation

4. Execution of programs with recursion

and negation

Computation and Search rules

Typically, executing a logic program in-

volves solving queries of the form: l1, l2, . . . , ln?

where the li are literals

Two problems confront us when solving

this query:

1. Which literal of the li should be solved

first?

– the rule governing this is called the

computation rule

2. Which clause should be selected first,

when more than one can be used to

solve the literal selected?

– the rule governing this is called the

search rule

Computation and search rules:
completeness

Most logic programs are executed using

the following:

Computation rule. Leftmost literal first

Search rule. Depth first search for clauses

in order of appearance

Question. Will a logic-programming system

with an arbitrary computation rule, and a

depth-first search of clauses in some fixed

order always find a leaf terminating in SUCCESS

(if one exists)?

Answer. No

Introduction to model theory

Model theory is concerned with attributing

meaning to logical sentences

Basics of model theory

1. Interpretations in propositional logic

2. Model-theoretic notions of validity, log-

ical consequence and satisfiability

3. Interpretations in 1st order logic

4. Herbrand interpretations, Herbrand mod-

els for logic programs and minimal Her-

brand models

Interpretations: propositional logic

Interpretations are simply assignmnents of

TRUE (t) or FALSE (f) to every proposi-

tion

– For e.g. given propositions p and q,

one possible interpretation assigns p to

TRUE and q to FALSE

– With this interpretation, other formulae

may be true or false: p∨q is TRUE, and

p ∧ q is FALSE

An interpretation that gives the value TRUE

for a formula is called a model for that for-

mula

– Thus, p = TRUE, q = FALSE is a

model for p ∨ q

Consequence and equivalence

Consider the formulae p and p ∨ q

– Every interpretation that makes p true

also makes p ∨ q true. That is, every

model of p is a model of p ∨ q

If every model of a sentence (or formula)

s1 is also a model of a sentence s2 then

s2 is said to be a logical consequence of

s1. Alternatively, s1 logically implies s2, or

s1 |= s2

If every model of s1 is a model of s2 and

every model of s2 is a model of s1 then s1
and s2 are logically equivalent, or s1 ≡ s2

Herbrand interpretations and
models

Interpretations in 1st order logic are more

complex than propositional logic

Yet logic programming systems appear to

determine logical consequences without re-

course to complex mappings

– Is an “intended interpretation” built-in?

– If so, will it work for any other interpre-

tations?

The logical consequence relation P |= s

requires that for every interpretation I, if

I is a model of P , then it is a model of s

In fact, executing a logic program does not

need to consider every interpretation. One

special interpretation called the Herbrand

interpretation is enough

Why?

– A set of clauses P has a model iff P

has a Herbrand interpretation that is a

model (that is, a “Herbrand model”)

– For definite-clause programs, there is a

unique minimal Herbrand model

– For any definite-clause program P and

ground atom s, P |= s iff s is in the

Herbrand model

What are Herbrand
interpretations?

Given a program P and a language L think

of all ground terms that can be constructed

– For e.g. let L consist of the constant
symbol 0, functions s/1, p/1 and predi-
cate symbol natural/1. Let P be:

natural(0) ←

natural(s(X)) ← natural(X)

– The set of all ground terms that can be

constructed is the infinite set {0, s(0), p(0),

s(p(0)), p(s(0)), . . .}. This set is called

the Herbrand universe

Now think of all ground atoms that can be

constructed using elements from the Her-

brand universe and predicate symbols in P

– Here, this is the infinite set {natural(0),

natural(s(0)), . . .}

– This is called the Herbrand base of P or

B(P)

A Herbrand interpretation is simply an as-

signment of TRUE to some subset of B(P)

and FALSE to the rest

– It is common to associate “Herbrand in-

terpretation” only with the set of atoms

assigned to TRUE

– Thus, {natural(0)} is a Herbrand inter-

pretation that assigns TRUE to natural(0)

and FALSE to everything else

What are Herbrand models?

Consider the following program P :

likes(john, X) ← likes(X, apples)

likes(mary, apples) ←

– B(P) is the set: {likes(john, john), likes(john,

apples), likes(apples, john), likes(john, mary),

likes(mary, john), likes(mary, apples), likes(

apples, mary), likes(mary, mary), likes(apples,

apples)}

– {likes(mary, apples), likes(john, mary)} is

a subset of B(P), and is a Herbrand in-

terpretation

– It is a Herbrand model for P

– {likes(mary, apples), likes(john, mary), likes(

mary, john)} is also a model for P

Ground instantiations and
Herbrand models

A set of 1st order clauses can be thought of

as “short-hand” for a set of ground clauses

– The ground clauses are obtained by re-

placing variables by terms from the Her-

brand universe (i.e. the set of all possi-

ble ground terms given L).

– This is called the ground instantiation

of P or G(P).

– A program P has a model iff G(P) has

a Herbrand model

Models for definite-clauses

The set of all Herbrand models for a definite-

clause program P is partially ordered by ⊆
and forms a lattice. For e.g.

For definite-clause programs, the minimal

model is unique

The “meaning” of a definite-clause pro-

gram is given by its minimal model

Deduction theorem

Let P = {s1, . . . sn} be a set of clauses and

s be a sentence (not necessarily ground)

Theorem. P |= s iff P − {si} |= (s← si)

– Implication is preserved if we remove

any sentence from the left and make it

a condition on the right

P − {s1, . . . , si} |= (s← s1 ∧ . . . ∧ si)

∅ |= (s← s1 ∧ . . . ∧ sn)

– s← s1 ∧ . . . ∧ sn is valid

P |= q iff P ∪ {∼ q} is unsatisfiable

– Logical consequence can be checked by

Refutation

Introduction to proof theory

Proof theory considers the mechanics of

generating a set of sentences from others

Basics of proof theory

1. Elements of proof theory

2. Theorem proving and proof procedures

3. Resolution for propositional logic

4. Substitutions, and resolution for 1st or-

der logic

5. SLD resolution

Resolution for propositional logic

Consider the clauses:

C1: is dangerous ← is cheetah

C2: is cheetah ← is carnivore, has tawny colour, has dark spots

– The resolvent of C1, C2 is the clause:

C: is dangerous ← is carnivore, has tawny colour, has dark spots

– Remember

C1: is dangerous∨ ∼ is cheetah

C2: is cheetah∨ ∼ is carnivore∨ ∼ has tawny colour∨ ∼ has dark spots

C: is dangerous∨ ∼ is carnivore∨ ∼ has tawny colour∨ ∼
has dark spots

– C1, C2 are called the parent clauses, and

is cheetah is the the literal that is re-

solved upon

Soundness of resolution

A single resolution step does the following:

– From p ← q and q ← r

– Infer p ← r

Since resolution is sound, we can always

add the clauses inferred to the original pro-

gram

Completeness of resolution

Resolution has these properties

– Consider a set of clauses s.t. each clause

has at most 1 positive literal. Such

clauses are called Horn clauses

– If a set of Horn clauses is unsatisfiable

then resolution will derive the empty clause.

Resolution is thus “refutation complete”

– However, it is not “affirmation complete”.
That is, if P |= s, then it need not follow
that P ` s using resolution

{p←, q ←} |= p← q

– But, if P ∪ {∼ s} ` 2 using resolution

then P ∪ {∼ s} |= 2 or P |= s

Resolution with 1st-order clauses

Step 0. Given a pair of clauses:

C1 : likes(steve, X) ← buys(X, ilp book)

C2 : buys(X, ilp book) ← sensible(X), rich(X)

Step 1. Rename all variables apart.

C1 : likes(steve, A) ← buys(A, ilp book)

C2 : buys(B, ilp book) ← sensible(B), rich(B)

Step 2. Identify complementary literals and see if
mgu exists.

buys(B, ilp book)θ = buys(A, ilp book)θ

θ = {A/B}

Step 3. Apply θ and form resolvent C.

1. Let C1θ = h1∨ ∼ l1∨ ∼ l2 . . .∨ ∼ lj

2. Let C2θ = l1∨ ∼ m1∨ ∼ m2 . . .∨ ∼ mk

3. Then C = h1∨ ∼ m1 ∨ . . .∨ ∼ mk∨ ∼ l2 . . .∨ ∼ lj

Earlier example:

C: likes(steve, B) ← sensible(B), rich(B)

Resolution remains sound and refutation-

complete with clausal logic (proof not re-

quired here)

Selected Linear resolution for
Definite clauses

Gven a program P , a query Q q(. . .), r(. . .), . . .?

1. Select a literal li in Q using some computation
rule.

2. Select a clause Ci from P that can resolve with
the selected literal. If no Ci is possible FAIL

3. Construct resolvent C using Ci and ← li as par-
ents

4. If C = 2 STOP otherwise Q = C, Goto Step 1

Resolution remains sound and refutation

complete with this strategy

Introduction to lattice theory and
generality orderings

A lattice is a system of elements with 2
basic operations: formation of meet and
formation of join

Basics of lattice theory

1. Sets

2. Relations and operations

3. Equivalence relations

4. Partial orders

5. Lattices

6. Quasi orders

7. Generality orderings

Relevance to ILP

ILP is concerned with the automatic con-

struction of “general” logical statements

from “specific” ones.

– For example, given mem(1, [1,2])← con-

struct mem(A, [A|B])←

Questions:

1. What do the words “general” and “spe-

cific” mean in a logical setting?

2. Can statements of increasing (decreas-

ing) generality be enumerated in an or-

derly manner?

These are questions about the mathemat-

ics of “generality”

– ILP identifies “generality” with |=. That

is, C1 is “more general” than C2 iff C1 |=
C2

– The relation |= results in a quasi-ordering

over a set of clauses.

– ILP systems are programs that search

such quasi-ordered sets

Subsumption ordering over atoms

Consider the set S of all atoms in some

language, and S+ = S ∪ {>,⊥}. Let the

dyadic relation � be such that:

– > � l for all l ∈ S+

– l �⊥ for all l ∈ S+

– l � m iff there is a substitution θ s.t.

lθ = m, for l, m ∈ S

� is a quasi-ordering known as “subsump-

tion”. A partial ordering results from the

partition of S+ into the sets {[>]}, {[⊥]}, X1, . . .

where [l] denotes all atoms that are alpha-

betic variants of l. That is, if l, m ∈ Xi

then there are substitutions µ and σ s.t.

lµ = m and mσ = l. Thus, � is a partial

ordering over the set of equivalence classes

of atoms (S+
E)

Example of subsumption ordering on atoms

– l = mem(A, [A, B]) � mem(1, [1,2]) =

m since with θ = {A/1, B/2}, lθ = m

– mem(A1, [A1, B1]), mem(A2, [A2, B2]) . . .

are all members of the same equivalence

class

For atoms l, m ∈ S, subsumption is equiv-

alent to implication

– If l |= m then l � m

Subsumption lattice of atoms

The p.o. set of equivalence classes of atoms

S+
E is a lattice with the binary operations

u and t defined on elements of S+
E as fol-

lows:

– [⊥] u [l] = [⊥], and [>] u [l] = [l]

– If l1, l2 ∈ S have mgu θ then [l1]u [l2] =

[l1θ] = [l2θ] otherwise [l1] u [l2] = [⊥]

– [⊥] t [l] = [l], and [>] t l] = [>]

– If l1 and l2 have lgg m then [l1] t [l2] =

[m] otherwise [l1] t [l2] = [>]

The join operation or lub called lgg stands

for least-general-generalisation of atoms

Finite Chains in the Lattice

It can be shown that if l � m (l covers

m) then there is a finite sequence l1, . . . , ln

s.t. l � l1 � . . . ln where ln is an alphabetic

variant of m

Progress from li to li+1 is achieved by ap-
plying one of the following substitutions:

1. {X/f(X1, . . . , Xk)} where X is a variable in li,
X1, . . . , Xk are distinct variables that do not ap-
pear in li, and f is some k-ary function symbol
in the language

2. {X/c} where X is a variable in li, and c is some
constant in the language

3. {X/Y } where X, Y are distinct variables in li

Subsumption ordering over Horn
clauses

Consider the set S of all Horn clauses in

some language, and S+ = S ∪ {⊥}. Let

2 denote the empty clause and the dyadic

relation � be such that:

– > = 2 � C for all C ∈ S+

– C �⊥ for all C ∈ S+

– C � D iff there is a substitution θ s.t.

Cθ ⊆ D, for C, D ∈ S

� is a quasi-ordering known as “subsump-

tion”. A partial ordering results from the

partition of S+ into the sets {[⊥]}, X1, . . .

where [C] denotes all clauses that are subsume-

equivalent to C. This are not simply alpha-

betic variants (as in the case of atoms).

That is, if C, D ∈ Xi there are substitu-

tions µ and σ s.t. Cµ ⊆ D and Dσ ⊆ C.

In fact, the subsume-equivalent class of C

is infinite, and [C] is usually represented

by its “smallest” member (reduced form).

Thus, � is a partial ordering over the set of

subsume-equivalent classes of clauses (S+
E)

Example of subsumption ordering on clauses

– C = p(X, Y) ←� p(a, b) ← q(a, b) = D

since with θ = {X/a, Y/b}, Cθ ⊆ D

For clauses C, D ∈ S, subsumption is not

equivalent to implication

– If C � D then C |= D

Subsumption lattice of Horn
clauses

The p.o. set of equivalence classes of Horn
clauses S+

E is a lattice with the binary op-
erations u and t defined on elements of
S+

E as follows:

– [⊥] u [C] = [⊥], and [>] u [C] = [C]

– If C1, C2 ∈ S have an mgi D then [C1]u[C2] = [D]
otherwise [C1] u [C2] = [⊥]

– [⊥] t [C] = [C], and [>] t C] = [>]

– If C1 and C2 have lgg D then [C1] t [C2] = [D]
otherwise [C1] t [C2] = [>]

The meet operation or glb called mgi stands for
most-general-instance. If the set of positive literals
in C1∪C2 have an mgu θ, then mgi(C1, C2) = (C1∪
C2)θ. Otherwise mgi(C1, C2) = ⊥

The join operation or lub called lgg stands for least-

general-generalisation of clauses (Lab Nos. 5, 6)

Example

S+ = { 2, ⊥,

is tiger(tom)← has stripes(tom), is tawny(tom) ,

is tiger(bob)← has stripes(bob), is white(bob) ,

is tiger(tom)← has stripes(tom) ,

is tiger(tom)← is tawny(tom) ,

is tiger(bob)← has stripes(bob) ,

is tiger(bob)← is white(tom) ,

is tiger(X)← has stripes(X) ,

is tiger(X)← is tawny(X) ,

is tiger(X)← is white(X) ,

is tiger(X)← }

Diagram of p.o. set S+
E :

No Finite Chains in the Lattice

The existence of finite chains in lattices

of atoms ordered by subsumption does not

carry over to Horn clauses ordered by sub-

sumption.

This follows from the observation that there

are clauses which have no finite and com-

plete set of downward covers

Relative Subsumption ordering
over Horn clauses

Consider Horn clauses C, D and a set B:

D : gfather(henry, john)←
B : father(henry, jane)←

father(henry, joe)←
parent(jane, john)←
parent(joe, robert)←

C : gfather(X, Y)← father(X, Z), parent(Z, Y)

Now C 6� D. But C � D′ where D′:

gfather(henry, john) ← father(henry, jane),
father(henry, joe),
parent(jane, john)
parent(joe, robert)

Relative subsumption C �B D if C � ⊥(D, B)
is a quasi-ordering

– ⊥(B, D) may not be Horn

– ⊥(B, D) may not be finite

Relative Subsumption Lattice over
Horn clauses

Lattice only if B is a finite set of positive

ground literals

Least upper bound of Horn clauses C1, C2

lggB(C1, C2) = lgg(⊥(B, C1),⊥(B, C2))

Greatest lower bound of Horn clauses C1, C2

glbb(C1, C2) = glb(⊥(B, C1),⊥(B, C2))

The non-existence of finite chains in lat-

tices of Horn clauses ordered by subsump-

tion carries over to the lattice of clauses

ordered by relative subsumption

Subsumption ordering over Horn
clause-sets

Consider the set S of all finite Horn clause-

sets in some language, and S+ = S ∪ {⊥}.
Let �θ denote subsumption relation over

Horn clauses and the dyadic relation � be

such that:

– > = {2} � T for all T ∈ S+

– T �⊥ for all T ∈ S

– T1 � T2 iff ∀D ∈ T2 ∃C ∈ T1 s.t. C �θ D

� is a quasi-ordering known as “subsump-

tion”. A partial ordering results from the

partition of S into the sets {2}, X1, . . . where

[T] denotes all clause-sets that are subsume-

equivalent to T . Two theories T1, T2 are

subsume equivalent iff T1 � T2 and T2 � T1

Example of subsumption ordering on clause-

sets

{mem(A, [A|B])←, mem(A, [B, A|C])←}

�

{mem(1, [1,2])←, mem(2, [1,2])←}

Subsumption lattice of Horn
clause-sets

It can be shown that the p.o. set of equiv-
alence classes of Horn clause-sets S+

E is a
lattice with the binary operations u (glb)
and t (lub) defined on elements of S+

E (up
to subsume-equivalence)

Given a pair T1, T2 ∈ S+
E

lub(T1, T2) = T1 ∪ T2

Given a pair T1, T2 ∈ S+
E

glb(T1, T2) =

gsH(C
′
1, C

′
2)

∣∣∣∣∣∣
〈C1, C2〉 ∈ T1 × T2

and C ′1, C
′
2 are variants

of C1, C2 std. apart


where, using the definition mgi of Horn
clauses

gsH(C1, C2) =

{
C1 ∪ C2 if C1, C2 headless
mgi(C1, C2) otherwise

No Finite Chains in the Lattice

The non-existence of finite chains in lat-

tices of Horn clauses ordered by subsump-

tion carries over to Horn clause-sets or-

dered by subsumption.

The implication ordering

In a manner analogous to subsumption, we

can define a quasi-ordering based on impli-

cation between clauses (clause-sets)

C � D if C |= D

and a quasi-ordering based on relative im-

plication

C �B D if B ∪ {C} |= D

The partial ordering over the resulting equiv-

alence classes is not a lattice (lubs and glbs

do not always exist)

Subsumption and Implication

The principal generality orderings of interest

are subsumption (�θ) and implication (�|=)

For clauses C, D, subsumption is not equiva-

lent to implication

if C �θ D then C �|= D

but

not vice− versa

For example

C : natural(s(X))← natural(X)

D : natural(s(s(X)))← natural(X)

The Subsumption Theorem

A key theorem linking subsumption and impli-

cation

If Σ is a set of clauses and D is a clause,

then Σ |= D iff D is a tautology, or

there exists a clause D′ �θ D which can

be derived from Σ using some form of

resolution.

When Σ contains a single clause C then the

only clauses that can be derived are the result

of self-resolutions of C

Thus the difference between C �|= D and C �θ

D arises when C is self-recursive or D is tau-

tological

Tractability

Logical implication between clauses is un-

decidable (even for Horn clauses)

Subsumption is decidable but NP-complete

(even for Horn clauses)

Restrictions to the form of clauses can make

subsumption efficient

– Determinate Horn clauses. There exists

an ordering of literals in C and exactly

one substitution θ s.t. Cθ ⊆ D

– k − local Horn clauses. Partition a Horn

clause into k “disjoint” sub-parts and

perform k independent subsumption tests

More problems with |=

We have already looked at the lattice of

clauses (quasi-)ordered by subsumption �θ

The lattice structure implies the existence

of lubs (least generalisations) and glbs (great-

est specialisations) for pairs of clauses

The same is not true for the implication

quasi-ordering �|=

Order lub glb
�θ

√ √

�|= ×
√

(for restricted languages lubs for �|= may well

exist)

Practical Generality Ordering

The strongest quasi-order that is practical

appears to be subsumption

Even that will require restrictions on the

clauses being compared

Refinement Operators

Refinement operators are defined for a S

with a quasi-ordering �

– ρ is a downward refinement operator if

∀C ∈ S : ρ(C) ⊆ {D|D ∈ S and C � D}

– δ is an upward refinement operator if

∀C ∈ S : δ(C) ⊆ {D|D ∈ S and D � C}

Desirable properties of ρ (and dually δ)

1. Locally Finite. ∀C ∈ S: ρ(C) is finite

and computable.

2. Complete. ∀C � D: ∃E ∈ ρ∗(C) s.t.

E ∼ D

3. Proper. ∀C ∈ S : ρ(C) ⊆ {D|D ∈ S and C �
D}

There are no upward (downward) refine-

ment operators that are locally finite, com-

plete and proper for sets of clauses ordered

by �θ

“Inductive” Logic Programming

(Sample data)

Examples:
grandfather(henry,john) ←
grandfather(henry,robert) ←

+
Background:
father(henry,jane) ←
father(henry,joe) ←
parent(jane,john) ←
parent(joe,robert) ←

?

Hypothesis:
∀X, Y grandfather(X, Y) ← ∃Z (father(X, Z), parent(Z, Y))

(A logic program)

Hypothesis formation and
justification

Abduction. Process of hypothesis formation.

Justification. The degree of belief assigned to

an hypothesis given a certain amount of

evidence.

Logical setting for abduction

B = C1 ∧ C2 ∧ . . . Background
E = E+ ∧ E− Examples
E+ = e1 ∧ e2 ∧ . . . Positive Examples
E− = f1 ∧ f2 ∧ . . . Negative Examples
H = D1 ∧D2 ∧ . . . Hypothesis

Prior Satisfiability. B ∧ E− 6|= 2

Posterior Satisfiability. B ∧H ∧ E− 6|= 2

Prior Necessity. B 6|= E+

Posterior Sufficiency. B∧H |= E+, B∧Di |=
e1 ∨ e2 ∨ . . .

More on this later

Probabilistic setting for
justification

Bayes’ Theorem

p(h|E) =
p(h).p(E|h)

p(E)

Best hypothesis in a set H (ignoring ties)

H = argmaxh∈H p(h|E)

Model for Noise Free Data

Given E = E+ ∪ E−

p(h|E) ∝ DH(h)
∏

e∈E+

p(e|h)
∏

e∈E−
p(e|h)

Or

P (h|E) ∝ DH(h)
∏

e∈E+

DX(e)

g(h)

∏
e∈E−

DX(e)

1− g(h)

Noise Free Data (contd.)

Assuming p positive and n negative examples

P (h|E) ∝ DH(h)

(∏
e∈E

DX(e)

)(
1

g(h)

)p(1

1− g(h)

)n

Maximal P (h|E) means finding the hypothesis

that maximises

logDH(h) + p log
1

g(h)
+ n log

1

1− g(h)

If there are no negative examples, then this

becomes

logDH(h) + p log
1

g(h)

Hypothesis Formation

Given background knowledge B and pos-
itive examples E+ = e1 ∧ e2 . . ., negative
examples E− ILP systems are concerned
with finding a hypothesis H = D1∧ . . . that
satisfies (note: ∪ and ∧ used interchange-
ably)

Posterior Sufficiency. B ∧ H |= E+ and
B ∧Dj |= e1 ∨ e2 ∨ . . .

Posterior Satisfiability. B ∧H ∧ E− 6|= 2

Recall that if more than one H satisfies
this, the one with highest posterior proba-
bility is chosen

The Di can be found by examining clauses
that “relatively subsume” at least one ex-
ample

Single Example, Single Hypothesis
Clause

What does it mean for clause D to “rela-
tively subsume” example e

– Normal subsumption: D � e means ∃θ s.t. Dθ ⊆
e. This also means Dθ |= e or |= (e← Dθ)

e : gfather(henry, john)←
B : father(henry, jane)←

father(henry, joe)←
parent(jane, john)←
parent(joe, robert)←

D : gfather(X, Y)← father(X, Z), parent(Z, Y)

– Note that for this B, D, e with θ = {X/henry, Y/john,
Z/jane}, B ∪ {Dθ} |= e

– That is: D �B e means B |= (e ← Dθ) Clearly
if B = ∅ normal subsumption between clauses
results.

– Using the Deduction Theorem

B |= (e← Dθ) ≡ B ∪ {Dθ} |= e

≡ B ∪ e |= Dθ

≡ {Dθ} |= B ∪ e

≡ |= (B ∪ e← Dθ)

– That is, D �B e means D � B ∪ e

– Recall that if C1 � C2 then C1 |= C2. In fact,
if C1,2 are not self-recursive, then C1 � C2 ≡
C1 |= C2

– Let a1 ∧ a2 . . . be the ground literals true in all
models of B ∪ e. Then

B ∪ e |= a1 ∧ a2 . . .

a1 ∧ a2 ∧ . . . |= B ∪ e

– Let ⊥(B, e) = a1 ∧ a2 ∧

– if D � ⊥(B, e) then D |= ⊥(B, e) and therefore
D |= B ∪ e.

– In fact, it can be shown that if D, e are not self-
recursive and D � ⊥(B, e) then D � B ∪ e (that
is, D �B e)

A Sufficient Implementation
(given B, E)

1. h0 = B, i = 0, E+ = {e1, . . . , en}

2. repeat

(a) increment i

(b) Obtain the most specific clause ⊥(B, ei)

(c) Find the clause Di that: subsumes ⊥(B, ei);
and is consistent with the negative ex-
amples;

(d) hi = hi−1 ∪ {Di}

3. until i > n

4. return hn

– ⊥(B, ei) may be infinite

– May perform a lot of redundant computa-

tion (Di ∈ hi−1)

– Need not return in the hypothesis with max-

imum posterior probability

A “Greedy” Implementation
(given B, E)

1. h0 = B, E+
0 = E+, i = 0

2. repeat

(a) increment i

(b) Randomly choose a positive example ei from
E+

i−1

(c) Obtain the most specific clause ⊥(B, ei)

(d) Find the clause Di that: subsumes ⊥(B, ei); and
is consistent with the negative examples; and
maximises p(hi−1∪{Di}|e+

i ∪E−) where e+
i are the

examples in E+ made redundant by hi−1 ∪ {Di}

(e) hi = hi−1 ∪ {Di}

(f) E+
i = E+

i−1\e
+
i

3. until E+
i = ∅

4. return hi

– ⊥(B, ei) may be infinite

– Need not return in the hypothesis with max-

imum posterior probability

Finding ⊥: an example

B:
gfather(X,Y) ← father(X,Z), parent(Z,Y)
father(henry,jane) ←
mother(jane,john) ←
mother(jane,alice) ←

ei:
gfather(henry,john) ←

Conjunction of ground atoms provable from B ∪ ei:
¬parent(jane,john) ∧
father(henry,jane) ∧
mother(jane,john) ∧
mother(jane,alice) ∧
¬gfather(henry,john)

⊥(B, ei):
gfather(henry,john) ∨ parent(jane,john) ←

father(henry,jane),
mother(jane,john),
mother(jane,alice)

Di:
parent(X,Y) ← mother(X,Y)

Ways of obtaining a finite ⊥:
depth-bounded mode language

Finding a clause Di that subsumes ⊥(B, ei)

is hampered by the fact that ⊥(B, ei) may

be infinite!

Use constrained subset of definite clauses

to construct finite most-specific clauses

Mode declarations and maximum “depth”

of variables

Finding ⊥i: an example

⊥(B, ei):

gfather(henry,john) ∨ parent(jane,john) ←
father(henry,jane),

mother(jane,john),

mother(jane,alice)

modes:

modeh(*,parent(+person,-person))

modeb(*,mother(+person,-person))

modeb(*,father(+person,-person))

⊥0(B, ei):

parent(X,Y) ←

⊥1(B, ei):

parent(X,Y) ←
mother(X,Y),

mother(X,Z)

Revised “Greedy” Implementation
(given B, E, d)

1. h0 = B, E+
0 = E+, i = 0

2. repeat

(a) increment i

(b) Randomly choose a positive example ei from
E+

i−1

(c) Obtain the most specific clause ⊥d(B, ei)

(d) Find the clause Di that: subsumes ⊥(B, ei); and
is consistent with the negative examples; and
maximises p(hi−1∪{Di}|e+

i ∪E−) where e+
i are the

examples in E+ made redundant by hi−1 ∪ {Di}

(e) hi = hi−1 ∪ {Di}

(f) E+
i = E+

i−1\e
+
i

3. until E+
i = ∅

4. return hi

– Need not return in the hypothesis with max-

imum posterior probability

Search and Redundancy

2 stages in clause-by-clause construction

of hypothesis

1. Search

2. Remove redundant clauses once best clause

is found

Moving about in the lattice:
refinement steps

General-to-specific search: start at 2, and
move by

1. Adding a literal drawn from ⊥i

p(X, Y)← q(X) becomes p(X, Y)← q(X), r(Y)

2. Equating two variables of the same type

p(X, Y)← q(X) becomes p(X, X)← q(X)

3. Instantiate a variable with a general functional
term or constant

p(X, Y)← q(X) becomes p(3, Y)← q(3)

Specific-to-general search: start at ⊥i

Each of these is called a “refinement step”

An Optimal Search Algorithm:
Branch-and-Bound

bb(i, ρ, f) : Given an initial element i from a discrete set
S; a successor function ρ : S → 2S; and a cost
function f : S → <, return H ⊆ S such that H
contains the set of cost-minimal models. That is
for all hi,j ∈ H, f(hi) = f(hj) = fmin and for all
s′ ∈ S\H f(s′) > fmin.

1. Active := 〈i〉.

2. best :=∞

3. selected := ∅

4. while Active 6= 〈〉

5. begin

(a) remove element k from Active

(b) cost := f(k)

(c) if cost < best

(d) begin

i. best := cost

ii. selected := {k}

iii. let Prune1 ⊆ Active s.t. for each j ∈ Prune1,
f(j) > best where f(j) is the lowest cost
possible from j or its successors

iv. remove elements of Prune1 from Active

(e) end

(f) elseif cost = best

i. selected := selected ∪ {k}

(g) Branch := ρ(k)

(h) let Prune2 ⊆ Branch s.t. for each j ∈ Prune2,
f(j) > best where f(j) is the lowest cost pos-
sible from j or its successors

(i) Bound := Branch\Prune2

(j) add elements of Bound to Active

6. end

7. return selected

Different search methods result from spe-
cific implementations of Active

– Stack: depth-first search

– Queue: breadth-first search

– Prioritised Queue: best-first search

Redundancy 1: Literal
Redundancy

Literal l is redundant in clause C∨ l relative

to background B iff

B ∧ (C ∨ l) ≡ B ∧ C

Can show The literal l is redundant in clause

C ∨ l relative to the background B iff

B ∧ (C ∨ l) |= C

The clause C is said to be reduced with

respect to background knowledge B iff no

literal in C is redundant.

Redundancy 2: Clause redundancy

Clause C is redundant in the B ∧ C iff B ∧
C ≡ B.

Can show Clause C is redundant in B ∧ C

iff

B |= C ≡ B ∧ C |= 2

A set of clauses S is said to be reduced iff
no clause in S is redundant

Example

ej : gfather(henry, john)←

B : father(henry, jane)←
father(henry, joe)←
parent(jane, john)←
parent(joe, robert)←

Dj : gfather(X, Y)← father(X, Z), parent(Z, Y)

What is meant by “Accuracy”?

Accuracy is measured according to some

probability distribution D over the space of

possible examples.

For illustration, examples might be drawn

according to the uniform distribution over

the Herbrand base for a given set of con-

stants and a given predicate.

The accuracy of a hypothesis H is simply

the probability, according to D, of drawing

an example that H misclassifies.

Method 1: Get More Examples

We wish to estimate the accuracy of our al-

gorithm’s hypothesis H. If we can obtain m

additional labelled examples, we can estimate

the accuracy of H based on the binomial dis-

tribution. Call an example a success just if H

classifies it correctly, and suppose in m exam-

ples we have n ≤ m successes. Then n
m is an

unbiased estimator of the accuracy of H.

Note: if we used the same examples for testing

as we used for learning, the estimate of accu-

racy would be biased in an “optimistic way”.

Further Details of Method 1

Suppose that p is the true accuracy of our hy-

pothesis H, and we will draw m new exam-

ples. Then n (the number of successes) is dis-

tributed according to the binomial distribution

b(m, p) with mean p and variance mp(1 − p).

This additional information allows us to say

something about how close our estimate of ac-

curacy is likely to be to the true accuracy.

Problem with Method 1

We often have very limited data: Examples:

determining active drugs or protein structure

requires time and costly experiments; deter-

mining user interests requires time on the part

of the user.

So if we had more data for testing, we’d re-

ally like to use it for training. But then we

lose our unbiased estimator. It turns out we

can get tighter, almost unbiased estimates if

we do resampling. We will consider only one

resampling method here.

Method 2: Leave-One-Out
Cross-Validation

Suppose we have m examples. We train (learn)

using m−1 examples, leaving one out for test-

ing. We repeat this m times, each time leaving

out a different example. The accuracy esti-

mate is the number of successes (correct clas-

sifications) divided by m.

Problem with leave-one-out: can be compu-

tationally expensive. This motivates our next

technique.

Method 2’: k-Fold
Cross-Validation

k-fold cross-validation is the same as leave-

one-out cross-validation, except we only repeat

k times, each time training on m−m
k examples

and testing on the remaining m
k examples.

Presentation of Results

Results of testing on new data or k-fold
cross-validation are tabulated as follows:

Actual
Positive Negative

Positive n1 n2 na

Predicted
Negative n3 n4 nb

nc nd m

n1: number of examples in the test set that are
labelled “positive” and are predicted “positive”
etcetera

Accuracy = p =
n1 + n4

m

S.d =
√

p(1− p)/m (not with k-fold c.v.)

Classical statistical tests for independence
between “Actual” and “Predicted” values
can be applied to the table when testing is
done on new data

