Questions Arising in Machine
Learning

T he following questions are relevant:

1. How accurate is the hypothesis for a particular
target concept and example-set?

2. How does accuracy vary with the number of ex-
amples provided?

3. How fast is the hypothesis constructed for a
particular target concept and example-set?

4. How does speed vary with the complexity of the
target and the complexity and number of exam-
ples?

5. For a given application, is one particular algo-
rithm better than another?

Experimental methodology is concerned with
Q1, and to some extent, Q5

Computational Learning Theory deals with
Q24



What is meant by “Accuracy”?

Accuracy IS measured according to some
probability distribution D over the space of
possible examples.

For illustration, examples might be drawn
according to the uniform distribution over
the Herbrand base for a given set of con-
stants and a given predicate.

The accuracy of a hypothesis H is simply
the probability, according to D, of drawing
an example that H misclassifies.



Method 1: Get More Examples

We wish to estimate the accuracy of our al-
gorithm’'s hypothesis H. If we can obtain m
additional labelled examples, we can estimate
the accuracy of H based on the binomial dis-
tribution. Call an example a success just if H
classifies it correctly, and suppose in m exam-
ples we have n < m successes. Then > is an
unbiased estimator of the accuracy of H.

Note: if we used the same examples for testing
as we used for learning, the estimate of accu-
racy would be biased in an “optimistic way".



Further Details of Method 1

Suppose that p is the true accuracy of our hy-
pothesis H, and we will draw m new exam-
ples. Then n (the number of successes) is dis-
tributed according to the binomial distribution
b(m,p) with mean p and variance mp(1l — p).
This additional information allows us to say
something about how close our estimate of
accuracy is likely to be to the true accuracy.
There are several ways to make use of this in-
formation.



Chernoff Bounds

For 0O < p <1 and m a positive integer, let X
be a random variable distributed b(m,p). Let
LE(p, m,r) denote the probability of X < r, and
let GE(p, m,r) denote the probability of X > r.
Then for 0 < a < 1:

a2m
LE(p,m, (1 —a)mp) < e 2

2

GE(p,m, (1 + a)mp) < e~ 3

As an example, suppose m 100, and the
number of successes we see in our sample is
90, so our estimated accuracy is .9. What is
the probability that the true accuracy is less
than .87 This is at most the maximum, over
all values of p between 0 and .8 and all values of

a between 0 and 1 such that 100p(1+«) > 90,

a2mp

of e 3 , which is at most .66.



Chebyshev’s Inequality

The probability that any random variable X
falls within k standard deviations of the mean
is at least (1 — k_—lz).

This is somewhat better than Chernoff Bounds.
Chernoff Bounds and Chebyshev’'s Inequality
are very general and require no underlying as-
sumptions. They are useful to provide loose
probabilistic bounds on the accuracy.



Explicit Computation of Binomial
Distribution

Tighter bounds can be found by explicit com-
putation using the binomial distribution. Thus,
for the question “What is the probability that
the true accuracy is 0.8, and we have obtained
a sample giving an estimate of at least 0.9"
we can calculate directly:

b(x;m,p) = C(m,x)p*¢™ %, x=0,1,2,...,m.
Assume p = .8 and compute the sum of proba-

bilities of x = 90,91, ...,100. The probabilities
found are much tighter.



Problem with Method 1

We often have very limited data: Examples:
determining active drugs or protein structure
requires time and costly experiments; deter-
mMining user interests requires time on the part
of the user.

So if we had more data for testing, we'd re-
ally like to use it for training. But then we
lose our unbiased estimator. It turns out we
can get tighter, almost unbiased estimates if
we do resampling. We will consider only one
resampling method here.



Method 2: Leave-One-Out
Cross-Validation

Suppose we have m examples. We train (learn)
using m — 1 examples, leaving one out for test-
ing. We repeat this m times, each time leaving
out a different example. The accuracy esti-
mate is the number of successes (correct clas-
sifications) divided by m.

Problem with leave-one-out: can be compu-
tationally expensive. This motivates our next
technique.



Method 2’': k-Fold
Cross-Validation

k-fold cross-validation is the same as leave-
one-out cross-validation, except we only repeat
k times, each time training on m — 7 examples
and testing on the remaining % examples.



Presentation of Results

Results of testing on new data or k-fold
cross-validation are tabulated as follows:

Actual
Positive Negative
Positive n1 no Ng
Predicted
Negative n3 n4 ny
Ne ng m

ni1. humber of examples in the test set that are
labelled “positive” and are predicted ‘“positive”
etcetera

n1 + na
m

Accuracy = p =

S.d = +/p(1 —p)/m (not with k-fold c.v.)

Classical statistical tests for independence
between “Actual’” and “Predicted” values
can be applied to the table when testing is
done on new data



