What is ILP?

Inductive Logic Programming X

Inductive Logic Programming +/

Machine Learning L ogic Programming

Applications
Statistical techniques

Representation
Theory
Implementation

Theory, Implementation and Application of
programs that construct
logic programs from
examples



Machine Learning

Programs that hypothesize general
descriptions from sample data
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Instances of some
sorted/unsorted lists of A general program for
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Logic Programming

Study of using symbolic logic as a
programming language

Specification = Programming

Logic program:
VX,Y grandfather(X,Y) «+ 3Z (father(X, Z), parent(Z,Y))

father(henry,jane) «+
father(henry,joe) <«

parent(jane,john) «
parent(joe,robert) <«

Y

Derived facts:
grandfather(henry,john) <«
grandfather(henry,robert) «




“Inductive” Logic Programming

(Sample data)

Examples:
grandfather(henry,john) <«
grandfather(henry,robert) «

_|_

Background:
father(henry,jane) <«
father(henry,joe) «+
parent(jane,john) <«
parent(joe,robert) <«

Hypothesis:
VX,Y grandfather(X,Y) « 37 (father(X, Z), parent(Z,Y))

(A logic program)




More interesting ILP

Examples:
Some carcinogenic chemicals
Some non-carcinogenic chemicals

1000’s
Background:
Molecular structure of chemicals
General chemical knowledge
10,000’s

Hypothesis:
VX carcinogenic(X) « ...




Hypothesis formation and
justification

Abduction. Process of hypothesis
formation.

Justification. The degree of belief assigned
to an hypothesis given a certain amount
of evidence.



Logical setting for abduction

B =C1NC>rA... Background

E =ETAE™ Examples

ET =ejAesA... Positive Examples
E- =fiANfoA... Negative Examples
H =Di{AD>A... Hypothesis

Prior Satisfiability. BAE™ = 0O

Posterior Satisfiability. BAHAE™ E=0O

Prior Necessity. B = ET

Posterior Sufficiency. BA H = ET,
BAD;E=eiVeyV...

More on this later



Probabilistic setting for
justification

Bayes' Theorem

p(h).p(E|h)

p(h|E) = (B

Best hypothesis in a set H (ignoring ties)

H = argmaxpey p(h|E)



Learning Framework

Let X be a countable set of instances
(encodings of all objects of interest) and
Dx be a probability measure on X

Let C C 2% be a countable set of
concepts and D, be a probablity measure
on 2%

Let H be a countable set of hypotheses
and D4, be a probability measure (prior)
over ‘H

Let the concept represented by h € H be
c(h) €eC



Learning Framework (contd.)

Let C and H be such that
— for each C €C, thereis an he H s.t. C =c(h)

— for each C € C, De(C) = P(h)

Z{he?—llC’:c(h)}

Target concept T is chosen using the
distribution D,

Let g(h) denote the proportion (w.r.t.
the instance space) of the concept
represented by a hypothesis h € ‘H

— Thatis, g(h) =) .. Dx(z)

— g(h) is a measure of the ‘generality” of h



Model for Noise Free Data

> Dy > Dy
No Yes
Yes No
Positive Example Negative Example

Given E=EtUE~

p(h|E) « Dy (k) ] p(elh) ]| p(elh)

ec B+ ecE—

P(h|E) o« Dy(h) ] Dx (e) I Dx (e)

e+ 90 cp-1—9g(h)



Noise Free Data (contd.)

Assuming p positive and n negative examples

1 \? 1 "
P(h|E) < Dy (h) (el;; DX(€)> (m) (1 _ g(h))

Maximal P(h|E) means finding the
hypothesis that maximises

1
logDy(h) +» lOg—— 4+ n lO
dDy(h) +p gg(h) n gl—g(h)

If there are no negative examples, then this
becomes

1
logD(h) + p log——
aDy(h) +p gg(h)



Some Questions

1. What is Dy (h)7?

2. What is g(h)?

3. What about noisy data?



T he Distribution Dy

A common assumption: ‘“larger”
programs are less likely (in coding
terminology, require more bits to encode)

101

D, (h)

l -

'l

An example
Dy, (h) = 271"
That is

logDy;(h) = —|h]



The generality function g

Recall that g(h) = Xyeqn) PDx(z)
— c¢(h) may be infinite

— Dx is usually unknown (and is a mapping to
the reals)

Have to be satisfied with approximate
estimates of g(h)

Estimation procedure

1. Randomly generate a finite sample of
n instances using a known distribution
(for eg. uniform)

2. Determine the number of these
instances (say c¢) entailed by h

3. g(h) = 5



A Model for Noisy Data

Bernoulli Trial Bernoulli Trial
1-¢ € 1-¢ €
| \
o Dy = Dy
No Yes
Yes No
y Y

Positive Example Positive Example Negative Example Negative Example

For any hypothesis h the examples
E = E1T U E~ can now be partitioned as
follows

1. TP ={ele € ET and e € c(h)} (true positives)
2. FN ={ele€ ET and e & c(h)} (false negatives)
3. FP={ele € E~ and e € c¢(h)} (false positives)

4. TN = {ele € E~ and e & c(h)} (true negatives)



Noisy Data (contd.)

Recall
p(hE) o Du(h) T pCelh) T] plelh)
ecE+ ecE-

Now
[T #telmy = IT (Z98=2 4 Dx(ore) [] e
ecE+ ecTP g(h) ecF'N

T (Px© =9 e ) N
gD 1;[N( 2+ Pxe) T pxto

So, with FPN = FPUFN

1 _ ¢\ /TP 1 —¢ \/TVM FPN|
p(h|E) ox Dy (h) (H DX(6)> <g(h)) <1 — g(h)) )

ecFE

Maximal P(h|E) means finding the
hypothesis that maximises

1—¢

g(h)

1 —
+ |T'N| log

logDy(h) + |TP| log — g(eh)

+ |FPN|loge



Another Model for Noisy Data

No

Bernoulli Trial

1-¢ €

' '

Positive Example Negative Example

- D,
Yes
No
Bernoulli Trial
1-¢ €
¢ ¢
Negative Example Positive Example




