What is ILP?

Inductive Logic $\,\,\,\,\,\,\,\,\,\,$ Programming $\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,$

Inductive Logic Programming $\sqrt{}$

Theory, Implementation and Application of programs that construct logic programs from examples

Machine Learning

Programs that hypothesize general descriptions from sample data

Logic Programming

Study of using symbolic logic as a programming language

Specification = Programming

```
Logic program: \forall X, Y \text{ grandfather}(X, Y) \leftarrow \exists Z \text{ (father}(X, Z), parent}(Z, Y)) father(henry,jane) \leftarrow father(henry,joe) \leftarrow parent(jane,john) \leftarrow parent(joe,robert) \leftarrow
```

Derived facts:

grandfather(henry,john) ←
grandfather(henry,robert) ←

"Inductive" Logic Programming

(Sample data)

Examples:

grandfather(henry,john) ←
grandfather(henry,robert) ←

Background:

father(henry,jane) ←
father(henry,joe) ←
parent(jane,john) ←
parent(joe,robert) ←

Hypothesis:

 $\forall X, Y \text{ grandfather}(X, Y) \leftarrow \exists Z \text{ (father}(X, Z), \text{ parent}(Z, Y))$

(A logic program)

More interesting ILP

Examples:

Some carcinogenic chemicals Some non-carcinogenic chemicals

1000's

Background:

Molecular structure of chemicals General chemical knowledge

10,000's

Hypothesis:

 $\forall X \text{ carcinogenic}(X) \leftarrow \dots$

. . .

... 10's

Hypothesis formation and justification

Abduction. Process of hypothesis formation.

Justification. The degree of belief assigned to an hypothesis given a certain amount of evidence.

Logical setting for abduction

$$B = C_1 \wedge C_2 \wedge \dots$$
 Background
 $E = E^+ \wedge E^-$ Examples
 $E^+ = \underline{e_1} \wedge \underline{e_2} \wedge \dots$ Positive Examples
 $E^- = \overline{f_1} \wedge \overline{f_2} \wedge \dots$ Negative Examples
 $H = D_1 \wedge D_2 \wedge \dots$ Hypothesis

Prior Satisfiability. $B \wedge E^- \not\models \Box$

Posterior Satisfiability. $B \wedge H \wedge E^- \not\models \Box$

Prior Necessity. $B \not\models E^+$

Posterior Sufficiency.
$$B \wedge H \models E^+$$
, $B \wedge D_i \models e_1 \vee e_2 \vee \dots$

More on this later

Probabilistic setting for justification

Bayes' Theorem

$$p(h|E) = \frac{p(h).p(E|h)}{p(E)}$$

Best hypothesis in a set \mathcal{H} (ignoring ties)

$$H = \operatorname{argmax}_{h \in \mathcal{H}} p(h|E)$$

Learning Framework

Let X be a countable set of instances (encodings of all objects of interest) and D_X be a probability measure on X

Let $\mathcal{C}\subseteq 2^X$ be a countable set of concepts and $D_{\mathcal{C}}$ be a probablity measure on 2^X

Let \mathcal{H} be a countable set of hypotheses and $D_{\mathcal{H}}$ be a probability measure (prior) over \mathcal{H}

Let the concept represented by $h \in \mathcal{H}$ be $c(h) \in \mathcal{C}$

Learning Framework (contd.)

Let $\mathcal C$ and $\mathcal H$ be such that

- for each $C \in \mathcal{C}$, there is an $h \in \mathcal{H}$ s.t. C = c(h)
- for each $C \in \mathcal{C}$, $D_{\mathcal{C}}(C) = \sum_{\{h \in \mathcal{H} | C = c(h)\}} P(h)$

Target concept T is chosen using the distribution $D_{\mathcal{C}}$

Let g(h) denote the proportion (w.r.t. the instance space) of the concept represented by a hypothesis $h \in \mathcal{H}$

- That is, $g(h) = \sum_{x \in c(h)} D_X(x)$
- $-\ g(h)$ is a measure of the "generality" of h

Model for Noise Free Data

Given
$$E = E^+ \cup E^-$$

$$p(h|E) \propto D_{\mathcal{H}}(h) \prod_{e \in E^{+}} p(e|h) \prod_{e \in E^{-}} p(e|h)$$

Or

$$P(h|E) \propto D_{\mathcal{H}}(h) \prod_{e \in E^{+}} \frac{D_{X}(e)}{g(h)} \prod_{e \in E^{-}} \frac{D_{X}(e)}{1 - g(h)}$$

Noise Free Data (contd.)

Assuming p positive and n negative examples

$$P(h|E) \propto D_{\mathcal{H}}(h) \left(\prod_{e \in E} D_X(e)
ight) \left(rac{1}{g(h)}
ight)^p \left(rac{1}{1-g(h)}
ight)^n$$

Maximal P(h|E) means finding the hypothesis that maximises

$$\log D_{\mathcal{H}}(h) + p \log \frac{1}{g(h)} + n \log \frac{1}{1 - g(h)}$$

If there are no negative examples, then this becomes

$$\log D_{\mathcal{H}}(h) + p \log \frac{1}{g(h)}$$

Some Questions

- 1. What is $D_{\mathcal{H}}(h)$?
- 2. What is g(h)?
- 3. What about noisy data?

The Distribution $D_{\mathcal{H}}$

A common assumption: "larger" programs are less likely (in coding terminology, require more bits to encode)

An example

$$D_{\mathcal{H}}(h) = 2^{-|h|}$$

That is

$$\log D_{\mathcal{H}}(h) = -|h|$$

The generality function g

Recall that $g(h) = \sum_{x \in c(h)} D_X(x)$

- -c(h) may be infinite
- $-\ D_X$ is usually unknown (and is a mapping to the reals)

Have to be satisfied with approximate estimates of g(h)

Estimation procedure

- 1. Randomly generate a finite sample of n instances using a known distribution (for eg. uniform)
- 2. Determine the number of these instances (say c) entailed by h
- 3. $g(h) \approx \frac{c+1}{n+2}$

A Model for Noisy Data

For any hypothesis h the examples $E=E^+\cup E^-$ can now be partitioned as follows

- 1. $TP = \{e | e \in E^+ \text{ and } e \in c(h)\}\ (\text{true positives})$
- 2. $FN = \{e | e \in E^+ \text{ and } e \notin c(h)\}$ (false negatives)
- 3. $FP = \{e | e \in E^- \text{ and } e \in c(h)\}$ (false positives)
- 4. $TN=\{e|e\in E^- \text{ and } e\not\in c(h)\}$ (true negatives)

Noisy Data (contd.)

Recall

$$p(h|E) \propto D_{\mathcal{H}}(h) \prod_{e \in E^+} p(e|h) \prod_{e \in E^-} p(e|h)$$

Now

$$\prod_{e \in E^+} p(e|h) = \prod_{e \in TP} \left(\frac{D_X(e)(1-\epsilon)}{g(h)} + D_X(e)\epsilon \right) \prod_{e \in FN} D_X(e)\epsilon$$

$$\prod_{e \in E^{-}} p(e|h) = \prod_{e \in TN} \left(\frac{D_X(e)(1-\epsilon)}{1-g(h)} + D_X(e)\epsilon \right) \prod_{e \in FP} D_X(e)\epsilon$$

So, with $FPN = FP \cup FN$

$$p(h|E) \propto D_{\mathcal{H}}(h) \left(\prod_{e \in E} D_X(e)
ight) \left(rac{1-\epsilon}{g(h)}
ight)^{|TP|} \left(rac{1-\epsilon}{1-g(h)}
ight)^{|TN|} \epsilon^{|FPN|}$$

Maximal P(h|E) means finding the hypothesis that maximises

$$\log D_{\mathcal{H}}(h) + |TP| \log \frac{1-\epsilon}{g(h)} + |TN| \log \frac{1-\epsilon}{1-g(h)} + |FPN| \log \epsilon$$

Another Model for Noisy Data

