Introduction to lattice theory and generality orderings

A lattice is a system of elements with 2 basic operations: formation of meet and formation of join

Basics of lattice theory

- 1. Sets
- 2. Relations and operations
- 3. Equivalence relations
- 4. Partial orders
- 5. Lattices
- 6. Quasi orders
- 7. Generality orderings

Relevance to ILP

ILP is concerned with the automatic construction of "general" logical statements from "specific" ones.

- For example, given $mem(1,[1,2]) \leftarrow \text{construct } mem(A,[A|B]) \leftarrow$

Questions:

- 1. What do the words "general" and "specific" mean in a logical setting?
- 2. Can statements of increasing (decreasing) generality be enumerated in an orderly manner?

These are questions about the mathematics of "generality"

- ILP identifies "generality" with \models . That is, C_1 is "more general" than C_2 iff $C_1 \models C_2$
- The relation |= results in a quasi-ordering over a set of clauses.
- ILP systems are programs that search such quasi-ordered sets

Sets

Fundamental concept in mathematics

- A set S contains elements $(S = \{a, b, ...\})$; elements are members of a set $(a \in S)$.
- Two sets S, T are equal (S=T) iff they contain precisely the same elements, otherwise $S \neq T$.
- A set T is a subset of S ($T \subseteq S$) if every member of T is a member of S. If $T \subseteq S$ and $S \subseteq T$ then S = T. $T \subseteq S$ means $S \supset T$.
- If $T \subseteq S$ and S contains an element not in T then T is a proper subset of S ($T \subset S$) $T \subset S$ means $S \supset T$.

Sets (contd.)

Intersection of two sets S, T

- The set with elements in common to sets S and T, denoted by $S \cap T$ or ST or $S \cdot T$. $ST \subseteq S$ and $ST \subseteq T$ for all S, T.
- If S and T are disjoint, ST is denoted by the unique set having no members (\emptyset) . $\emptyset \subseteq S$ for all S and $\emptyset \cdot S = \emptyset$ for all S.

Union of two sets S, T

- The set with elements which belong to at least S or T, denoted by $S \cup T$ or S+T. $S \subseteq S+T$ and $T \subseteq S+T$ for all S,T. $S+\emptyset=S$ for all S.

Equivalence of two sets S, T

- If there is a 1-1 correspondence between members of S and members of T (every member of S corresponds to just one member of T and every member of T corresponds to just one member of T) then $S \sim T$.
- If there is a $T\subset S$ and $S\sim T$ then S is said to be infinite, otherwise S is said to be finite. The set of natural numbers $\mathcal N$ is of particular importance. $\mathcal N$ is infinite, and any set $S\sim \mathcal N$ is said to be countable.

Relations and Operations

Finite sequence: a set of n elements placed in a 1-1 correspondence to the set $\{1, \ldots, n\}$ arranged in order of succession. An *ordered* pair is a sequence of 2 elements.

Dyadic or binary relation R over a set S: a set of ordered pairs (x,y) where $x,y \in S$. If $(a,b) \in R$ then aRb means "a is in the relation R to b" or "relation R holds between a and b."

Finitary operation in a set S: let $s_n = (x_1, \ldots, x_n)$ be sequences of n elements. To each such sequence, associate just one element $y \in S$. The set P of ordered pairs (s_n, y) is a finitary operation in S. $s_n Py$ denotes a n-ary operation and is denoted

by $P(x_1,...,x_n)=y$. If n=1, then P is a dyadic relation over S.

- Let $S = \mathcal{N}$. Then addition (+), subtraction (-) etc. are examples of binary operations in S.

If a n-ary operation P is defined for every sequence s_n of n elements of A, then S is closed wrt P. A set S closed wrt one or more finitary operations is called an algebra. A subalgebra is a subset of an algebra S which is self-contained wrt to the operations.

- $\mathcal N$ is closed wrt the binary operations of + and \times , and $\mathcal N$ along with $+,\times$ form an algebra.
- The set \mathcal{E} of even numbers is a subalgebra of algebra of \mathcal{N} with $+, \times$. The set \mathcal{O} of odd numbers is not a subalgebra.

- Let $S \subseteq U$ and $S' \subseteq U$ be the set with elements of U not in S (the unary operation of complementation). Let $U = \{a,b,c,d\}$. The subsets of U with the operations of complementation, intersection and union form an algebra. How many subalgebras are there of this algebra?

Answer=

Equivalence Relations

Equivalence relation E over a set S is a dyadic relation over S that satisfies the following properties:

Reflexive. For every $a \in S$, aEa

Symmetric. If aEb then bEa

Transitive. If aEb and bEc then aEc

- Let $S=\mathcal{N}$ and aEb iff a+b is even. That is, E consists of all ordered pairs (a,b) whose sum is even. This makes all even numbers equivalent, and the odd numbers equivalent
- Let $S=\{a,b,c,d\}$ and xEy if $x,y\in\{a,b\}$ or $x,y\in\{c,d\}$. This makes a,b equivalent to each other and c,d equivalent to each other

- **Theorem.** Any equivalence relation E over a non-empty set S results in a partition of S into disjoint non-empty subsets which contain all the members of S.
 - The subsets are called "equivalence classes" or "blocks of the partition". Some special partitions: every block contains exactly 1 element (zero partition); at most 1 block contains more than 1 element (singular partition); and 1 block contains all the elements (unity partition).
- **Theorem.** Any partition of a set S into disjoint subsets such that every member of S is in some subset results in an equivalence relation E over S.

Partial Order

Gven an equality relation = over elements of a set S, a partial order \leq over S is a dyadic relation over S that satisfies the following properties:

Reflexive. For every $a \in S$, $a \leq a$

Anti-Symmetric. If $a \leq b$ and $b \leq a$ then a = b

Transitive. If $a \leq b$ and $b \leq c$ then $a \leq c$

- If $a \leq b$ and $a \neq b$ then $a \prec b$
- $-b \succeq a$ means $a \leq b$, $b \succ a$ means $a \prec b$
- If $a \leq b$ or $b \leq a$ then a, b are comparable, otherwise they are not comparable

- A set S over which a relation of partial order is defined is called a partially ordered set
- It is sometimes convenient to refer to a set S and a relation R defined over S together by the pair < S, R >
- Examples of partially ordered sets $\langle S, \preceq \rangle$:
 - * S is a set of sets, $S_1 \preceq S_2$ means $S_1 \subseteq S_2$
 - $*~S=\mathcal{N},~n_1\preceq n_2$ means $n_1=n_2$ or there is a $n_3\in\mathcal{N}$ such that $n_1+n_3=n_2$
 - * S is the set of equivalence relations E_1,\ldots over some set $T,\ E_L\preceq E_M$ means for $u,v\in T,\ uE_Lv$ means uE_Mv (that is, $(u,v)\in E_L$ means $(u,v)\in E_M$).

- Given a set $S=\{a,b,\ldots\}$ if $a\prec b$ and there is no $x\in S$ such that $a\prec x\prec b$ then b covers a or a is a downward cover of b
- Given a set S let S_{down} be a set of downward covers of $b \in S$. If for all $x \in S$, $x \prec b$ implies there is an $a \in S_{down}$ s.t. $x \preceq a \prec b$, then S_{down} is said to be a complete set of downward covers of b.

Diagrammatic representation of a partially ordered set

Partial order (contd.)

Let $\langle S, \preceq \rangle$ be a p.o. set and $T \subseteq S$

Least element of T	Greatest element of T	
$a \in T \ s.t. \ \forall t \in T \ a \leq t$	$a \in T \ s.t. \ \forall t \in T \ a \succeq t$	
Least element, if it exists,	Greatest element, if it exists	
is unique. If $T = S$ this is	If $T = S$ then this is	
the "zero" element	the "unity" element	
Minimal element of T	Maximal element of T	
$a \in T \not\exists t \in T \ s.t. \ t \prec a$	$a \in T \not\exists t \in T \ s.t. \ t \succ a$	
Minimal element need	Maximal element need	
not be unique	not be unique	
Lower bound of T	Upper bound of T	
$b \in S \ s.t. \ b \leq t \ \forall t \in T$	$b \in S \ s.t. \ b \succeq t \ \forall t \in T$	
Glb g of T	Lub g of T	
$b \leq g \ \forall b, g : \ lbs \ of \ T$	$b \succeq g \ \forall b, g : \ ubs \ of \ T$	
If it exists, glb is unique	If it exists lub is unique	

If for every pair $a,b \in S$, $a \prec b$ or $b \prec a$ then S is totally ordered or is a chain. Any subset of a chain is a chain.

Lattice

A lattice is a partially ordered set $\langle S, \preceq \rangle$ in which every pair $a,b \in S$ has a greatest lower bound $(a \sqcap b \text{ or } ab \text{ or } meet)$ in S and a least upper bound $(a \sqcup b \text{ or } a+b \text{ or } join)$ in S

Theorem. A lattice is an algebra with the binary operations of □ and □

Properties of \sqcap and \sqcup

- $-a \sqcap b = b \sqcap a$, and $a \sqcup b = b \sqcup a$
- $-a\sqcap(b\sqcap c)=(a\sqcap b)\sqcap c$, and $a\sqcup(b\sqcup c)=(a\sqcup b)\sqcup c$
- If $a \leq b$ then $a \cap b = a$, and $a \sqcup b = b$
- $-a\sqcap(a\sqcup b)=a$, and $a\sqcup(a\sqcap b)=a$

Example

- Let S be all the subsets of $\{a,b,c\}$, and for $X,Y\in S$, $X\preceq Y$ mean $X\subseteq Y$, $X\sqcap Y=X\cap Y$ and $X\sqcup Y=X\cup Y$. Then $< S,\subseteq>$ is a lattice.

Quasi-order

f A quasi-order Q in a set S is a dyadic relation over S that satisfies the following properties:

Reflexive. For every $a \in S$, aQa

Transitive. If aQb and bQc then aQc

- Differs from equivalence relation in that symmetry is not required
- Differs from partial order in that no equality is defined, therefore anti-symmetry property cannot be defined

Theorem. If a quasi-order Q is defined on a set $S = \{a, b, \ldots\}$, and we define a dyadic relation E as follows: aEb iff aQb and bQa, then E is an equivalence relation.

Theorem. Let E partition S into subsets X,Y,\ldots of equivalent elements. Let $T=\{X,Y,\ldots\}$ and \preceq be a dyadic relation in T meaning $X \preceq Y$ in T iff xQy in S for some $x \in X, y \in Y$. Then T is partially ordered by \preceq .

f A quasi-order order Q over a set S results in a partial ordering over a set of equivalence classes of elements in S

In ILP, we will be concerned with cases where S consists logical sentences (atoms and clauses) and Q is the *subsumption* relation or the *implication* relation

Subsumption ordering over atoms

Consider the set S of all atoms in some language, and $S^+ = S \cup \{\top, \bot\}$. Let the dyadic relation \succeq be such that:

- $\top \succ l$ for all $l \in S^+$
- $l \succeq \perp$ for all $l \in S^+$
- $-l \succeq m$ iff there is a substitution θ s.t. $l\theta = m$, for $l, m \in S$

 \succeq is a quasi-ordering known as "subsumption". A partial ordering results from the partition of S^+ into the sets $\{[\top]\}, \{[\bot]\}, X_1, \ldots$ where [l] denotes all atoms that are alphabetic variants of l. That is, if $l, m \in X_i$ then there are substitutions μ and σ s.t. $l\mu = m$ and $m\sigma = l$. Thus, \succeq is a partial

ordering over the set of equivalence classes of atoms (S_E^+)

Example of subsumption ordering on atoms

- $-l = mem(A, [A, B]) \succeq mem(1, [1, 2]) =$ m since with $\theta = \{A/1, B/2\}$, $l\theta = m$
- $mem(A1, [A1, B1]), mem(A2, [A2, B2]) \dots$ are all members of the same equivalence class

For atoms $l, m \in S$, subsumption is equivalent to implication

- If $l \models m$ then $l \succeq m$

Subsumption lattice of atoms

The p.o. set of equivalence classes of atoms S_E^+ is a lattice with the binary operations \square and \square defined on elements of S_E^+ as follows:

$$- [\bot] \sqcap [l] = [\bot]$$
, and $[\top] \sqcap [l] = [l]$

- If $l_1, l_2 \in S$ have $mgu \ \theta$ then $[l_1] \sqcap [l_2] = [l_1\theta] = [l_2\theta]$ otherwise $[l_1] \sqcap [l_2] = [\bot]$
- $[\bot] \sqcup [l] = [l]$, and $[\top] \sqcup l] = [\top]$
- If l_1 and l_2 have $lgg\ m$ then $[l_1] \sqcup [l_2] = [m]$ otherwise $[l_1] \sqcup [l_2] = [\top]$

The join operation or lub called *lgg* stands for least-general-generalisation of atoms (Lab Nos. 5, 6)

Example

 $S^{+} = \{ \top, \perp, mem(1,[1,3]), mem(1,[1,2]), mem(2,[2,3]), mem(1,[1,A]), mem(A,[A,B]), mem(A,[A,3]), mem(A,[B,C]), mem(A,[B|C]) mem(A,B) \}$

Finite Chains in the Lattice

It can be shown that if $l \succ m$ (l covers m) then there is a finite sequence l_1, \ldots, l_n s.t. $l \succ l_1 \succ \ldots l_n$ where l_n is an alphabetic variant of m

Progress from l_i to l_{i+1} is achieved by applying one of the following substitutions:

- 1. $\{X/f(X_1,\ldots,X_k)\}$ where X is a variable in l_i , X_1,\ldots,X_k are distinct variables that do not appear in l_i , and f is some k-ary function symbol in the language
- 2. $\{X/c\}$ where X is a variable in l_i , and c is some constant in the language
- 3. $\{X/Y\}$ where X,Y are distinct variables in l_i

In ILP, these 3 operations define a "down-ward refinement operator"

Subsumption ordering over Horn clauses

Consider the set S of all Horn clauses in some language, and $S^+ = S \cup \{\bot\}$. Let \Box denote the empty clause and the dyadic relation \succ be such that:

$$- \top = \Box \succ C$$
 for all $C \in S^+$

$$-C \succeq \perp$$
 for all $C \in S^+$

— $C \succeq D$ iff there is a substitution θ s.t. $C\theta \subseteq D$, for $C,D \in S$

 \succeq is a quasi-ordering known as "subsumption". A partial ordering results from the partition of S^+ into the sets $\{[\bot]\}, X_1, \ldots$ where [C] denotes all clauses that are subsume-equivalent to C. This are not simply alphabetic variants (as in the case of atoms).

That is, if $C,D \in X_i$ there are substitutions μ and σ s.t. $C\mu \subseteq D$ and $D\sigma \subseteq C$. In fact, the subsume-equivalent class of C is infinite, and [C] is usually represented by its "smallest" member (reduced form). Thus, \succeq is a partial ordering over the set of subsume-equivalent classes of clauses (S_E^+)

Example of subsumption ordering on clauses

$$-C = p(X,Y) \leftarrow \succeq p(a,b) \leftarrow q(a,b) = D$$

since with $\theta = \{X/a, Y/b\}, C\theta \subseteq D$

- $p(X,X) \leftarrow, p(X,X1) \leftarrow, p(X1,X2) \leftarrow \dots$ are all in the same equivalence class. $p(X,X) \leftarrow$ is the reduced form of this class.

For clauses $C,D\in S$, subsumption is *not* equivalent to implication

- If
$$C \succeq D$$
 then $C \models D$

Subsumption lattice of Horn clauses

The p.o. set of equivalence classes of Horn clauses S_E^+ is a lattice with the binary operations \sqcap and \sqcup defined on elements of S_E^+ as follows:

- $[\bot] \sqcap [C] = [\bot]$, and $[\top] \sqcap [C] = [C]$
- If $C_1, C_2 \in S$ have an $mgi\ D$ then $[C_1] \sqcap [C_2] = [D]$ otherwise $[C_1] \sqcap [C_2] = [\bot]$
- $[\bot] \sqcup [C] = [C]$, and $[\top] \sqcup C] = [\top]$
- If C_1 and C_2 have $lgg\ D$ then $[C_1] \sqcup [C_2] = [D]$ otherwise $[C_1] \sqcup [C_2] = [\top]$

The meet operation or glb called mgi stands for most-general-instance. If the set of positive literals in $C_1 \cup C_2$ have an mgu θ , then $mgi(C_1, C_2) = (C_1 \cup C_2)\theta$. Otherwise $mgi(C_1, C_2) = \bot$

The join operation or lub called *lgg* stands for least-general-generalisation of clauses (Lab Nos. 5, 6)

Example

```
S^{+} = \{ \Box, \bot, \\ is\_tiger(tom) \leftarrow has\_stripes(tom), is\_tawny(tom) , \\ is\_tiger(bob) \leftarrow has\_stripes(bob), is\_white(bob) , \\ is\_tiger(tom) \leftarrow has\_stripes(tom) , \\ is\_tiger(tom) \leftarrow is\_tawny(tom) , \\ is\_tiger(bob) \leftarrow has\_stripes(bob) , \\ is\_tiger(bob) \leftarrow is\_white(tom) , \\ is\_tiger(X) \leftarrow has\_stripes(X) , \\ is\_tiger(X) \leftarrow is\_tawny(X) , \\ is\_tiger(X) \leftarrow is\_tawny(X) , \\ is\_tiger(X) \leftarrow is\_white(X) , \\ is\_tiger(X) \leftarrow is\_white(X) , \\ is\_tiger(X) \leftarrow is\_white(X) , \\ \\ is\_white(X) \leftarrow is\_white(X) ,
```

Diagram of p.o. set S_E^+ :

No Finite Chains in the Lattice

The existence of finite chains in lattices of atoms ordered by subsumption does *not* carry over to Horn clauses ordered by subsumption.

This follows from the observation that there are clauses which have no *finite* and complete set of downward covers

This makes it impossible to devise an ILP program that uses a refinement operator that is both complete and non-redundant

Relative Subsumption ordering over Horn clauses

Consider Horn clauses C, D and a set B:

```
\begin{array}{ll} D: & gfather(henry, john) \leftarrow \\ B: & father(henry, jane) \leftarrow \\ & father(henry, joe) \leftarrow \\ & parent(jane, john) \leftarrow \\ & parent(joe, robert) \leftarrow \\ C: & gfather(X, Y) \leftarrow father(X, Z), parent(Z, Y) \end{array}
```

Now $C \not\succeq D$. But $C \succeq D'$ where D': $gfather(henry, john) \leftarrow father(henry, jane), \\ father(henry, joe), \\ parent(jane, john) \\ parent(joe, robert)$

Relative subsumption $C \succeq_B D$ if $C \succeq \bot(D, B)$ is a quasi-ordering

- $-\perp (B,D)$ may not be Horn
- $-\perp (B,D)$ may not be finite

Relative Subsumption Lattice over Horn clauses

Lattice only if B is a finite set of positive ground literals

Least upper bound of Horn clauses C_1, C_2

$$lgg_B(C_1, C_2) = lgg(\bot(B, C_1), \bot(B, C_2))$$

Greatest lower bound of Horn clauses C_1, C_2

$$glb_b(C_1, C_2) = glb(\bot(B, C_1), \bot(B, C_2))$$

The non-existence of finite chains in lattices of Horn clauses ordered by subsumption carries over to the lattice of clauses ordered by relative subsumption

Subsumption ordering over Horn clause-sets

Consider the set S of all finite Horn clause-sets in some language, and $S^+ = S \cup \{\bot\}$. Let \succeq_{θ} denote subsumption relation over Horn clauses and the dyadic relation \succeq be such that:

$$- \top = \{\Box\} \succeq T \text{ for all } T \in S^+$$

$$T \succeq \perp$$
 for all $T \in S$

$$-T_1 \succeq T_2 \text{ iff } \forall D \in T_2 \exists C \in T_1 \text{ s.t. } C \succeq_{\theta} D$$

 \succeq is a quasi-ordering known as "subsumption". A partial ordering results from the partition of S into the sets $\{\Box\}, X_1, \ldots$ where [T] denotes all clause-sets that are subsume-equivalent to T. Two theories T_1, T_2 are subsume equivalent iff $T_1 \succeq T_2$ and $T_2 \succeq T_1$

Example of subsumption ordering on clausesets

$$\{mem(A, [A|B]) \leftarrow, mem(A, [B, A|C]) \leftarrow \}$$

$$\succeq$$
 $\{mem(1, [1, 2]) \leftarrow, mem(2, [1, 2]) \leftarrow \}$

Subsumption lattice of Horn clause-sets

It can be shown that the p.o. set of equivalence classes of Horn clause-sets S_E^+ is a lattice with the binary operations \sqcap (glb) and \sqcup (lub) defined on elements of S_E^+ (up to subsume-equivalence)

Given a pair
$$T_1, T_2 \in S_E^+$$

$$lub(T_1, T_2) = T_1 \cup T_2$$

Given a pair $T_1, T_2 \in S_E^+$

$$glb(T_1, T_2) = \begin{cases} gs_{\mathcal{H}}(C_1', C_2') & \langle C_1, C_2 \rangle \in T_1 \times T_2 \\ \text{and } C_1', C_2' \text{ are variants } \\ \text{of } C_1, C_2 \text{ std. apart} \end{cases}$$

where, using the definition mgi of Horn clauses

$$gs_{\mathcal{H}}(C_1, C_2) = \begin{cases} C_1 \cup C_2 & \text{if } C_1, C_2 \text{ headless} \\ mgi(C_1, C_2) & \text{otherwise} \end{cases}$$

No Finite Chains in the Lattice

The non-existence of finite chains in lattices of Horn clauses ordered by subsumption carries over to Horn clause-sets ordered by subsumption.

The implication ordering

In a manner analogous to subsumption, we can define a quasi-ordering based on implication between clauses (clause-sets)

$$C \succeq D$$
 if $C \models D$

and a quasi-ordering based on relative implication

$$C \succ_B D$$
 if $B \cup \{C\} \models D$

The partial ordering over the resulting equivalence classes is not a lattice (lubs and glbs do not always exist)

Subsumption and Implication

The principal generality orderings of interest are subsumption (\succeq_{θ}) and implication (\succeq_{\models})

For clauses C,D, subsumption is *not* equivalent to implication

if
$$C \succeq_{\theta} D$$
 then $C \succeq_{\models} D$

but

not vice – versa

For example

 $C: natural(s(X)) \leftarrow natural(X)$

 $D: natural(s(s(X))) \leftarrow natural(X)$

The Subsumption Theorem

A key theorem linking subsumption and implication

If Σ is a set of clauses and D is a clause, then $\Sigma \models D$ iff D is a tautology, or there exists a clause $D' \succeq_{\theta} D$ which can be derived from Σ using some form of resolution.

When Σ contains a single clause C then the only clauses that can be derived are the result of *self-resolutions* of C

Thus the difference between $C \succeq_{\models} D$ and $C \succeq_{\theta} D$ arises when C is self-recursive or D is tautological

Comparing Generality Orderings

Given a set of clauses S, clauses $C, D \in S$ and quasi-orders \succeq_1 and \succeq_2 on S, then \succeq_1 is *stronger* than \succeq_2 if $C \succeq_2 D$ implies $C \succeq_1 D$. If also for some $C, D \in S$ $C \not\succeq_2 D$ and $C \succeq_1 D$ then \succeq_1 is *strictly stronger* than \succeq_2

The implication ordering is strictly stronger than the subsumption ordering

Other Generality Orderings

Quasi-orders that are increasingly weaker can be devised from stronger ones. For example:

$$-C \succeq_{\models} D \text{ iff } C \models D$$

- $C \succeq_{\theta}$ iff there is a substitution θ s.t. $C \subseteq D$
- $-C \succeq_{\theta'} D$ iff every literal in D is *compatible* to a literal in C and $C \succeq_{\theta} D$.

$$-C \succeq_{\theta''} D$$
 iff $|C| \geq |D|$ and $C \succeq_{\theta'} D$

We would like the strongest ordering that is practical

Tractability

Logical implication between clauses is undecidable (even for Horn clauses)

Subsumption is decidable but NP-complete (even for Horn clauses)

Restrictions to the form of clauses can make subsumption efficient

- Determinate Horn clauses. There exists an ordering of literals in C and exactly one substitution θ s.t. $C\theta \subseteq D$
- k-local Horn clauses. Partition a Horn clause into k "disjoint" sub-parts and perform k independent subsumption tests

More problems with \models

We have already looked at the lattice of clauses (quasi-)ordered by subsumption \succeq_{θ}

The lattice structure implies the existence of lubs (least generalisations) and glbs (greatest specialisations) for pairs of clauses

The same is not true for the implication quasi-ordering \succeq_{\models}

Order	lub	glb
\succeq_{θ}		$\sqrt{}$
<u></u>	×	$\sqrt{}$

(for restricted languages lubs for \succeq_{\models} may well exist)

Practical Generality Ordering

The strongest quasi-order that is practical appears to be subsumption

Even that will require restrictions on the clauses being compared

Refinement Operators

Refinement operators are defined for a S with a quasi-ordering \succ

- ρ is a downward refinement operator if $\forall C \in S : \rho(C) \subseteq \{D | D \in S \text{ and } C \succeq D\}$
- δ is an upward refinement operator if $\forall C \in S : \delta(C) \subseteq \{D | D \in S \text{ and } D \succeq C\}$

Desirable properties of ρ (and dually δ)

- 1. Locally Finite. $\forall C \in S$: $\rho(C)$ is finite and computable.
- 2. Complete. $\forall C \succ D$: $\exists E \in \rho^*(C)$ s.t. $E \sim D$
- 3. Proper. $\forall C \in S : \rho(C) \subseteq \{D | D \in S \text{ and } C \succ D\}$

Refinement Operators under \succeq_{θ}

Example. With an equality theory = /2, $D \in \rho(C)$ if:

$$D = \left\{ \begin{array}{ll} p(X_1, X_2, \dots, X_{n_p}) & \text{if } C = \square \text{ and } p/n_p \in \mathcal{L} \\ & \text{and the } X_i \text{ are distinct} \\ C \cup \{\neg l\} & \text{otherwise} \end{array} \right.$$

where

$$l = \left\{ \begin{array}{ll} V = W & \text{where } V, W \text{ occur in } C \\ V = f(X_1, X_2, \ldots, X_{n_f}) & \text{where } V \text{ occurs in } C \\ & \text{and } f/n_f \in \mathcal{L} \text{ and} \\ & \text{the } X_i \text{ are distinct} \\ q(X_1, X_2, \ldots, X_{n_q}) & \text{where } q/n_q \in \mathcal{L} \\ & \text{and the } X_i \text{ occur in } C \end{array} \right.$$

There are no upward (downward) refinement operators that are locally finite, complete and proper for sets of clauses ordered by \succeq_{θ}