Introduction to lattice theory and
generality orderings

A lattice is a system of elements with 2
basic operations: formation of meet and
formation of join

Basics of lattice theory

1. Sets

2. Relations and operations
3. Equivalence relations

4. Partial orders

5. Lattices

6. Quasi orders

7. Generality orderings



Relevance to ILP

ILP is concerned with the automatic con-
struction of ‘general” logical statements
from ‘“specific’ ones.

— For example, given mem(1,[1,2]) < con
struct mem(A, [A|B]) +

Questions:

1. What do the words ‘‘general” and ‘spe-
cific’ mean in a logical setting?

2. Can statements of increasing (decreas-
ing) generality be enumerated in an or-
derly manner?

These are questions about the mathemat-
ics of “generality”



— ILP identifies “generality’” with =. That
is, C1is “more general” than Cs iff C71 &=
C>

— The relation = results in a quasi-ordering
over a set of clauses.

— ILP systems are programs that search
such quasi-ordered sets



Sets

Fundamental concept in mathematics

— A set S contains elements (S = {a,b,...});
elements are members of a set (a € S).

— Two sets S, T are equal (S =T) iff they
contain precisely the same elements, oth-
erwise S = T.

— A set T is a subset of § (T' C S) if every
member of T'is a memberof §S. IfT"C S
and S C T then S =T. T C S means
SOT.

— If TTC S and S contains an element not
in T then T is a proper subset of S (T C
S)TCS means SO T.



Sets (contd.)

Intersection of two sets S, T

— The set with elements in common to
sets S and 7', denoted by SNT or ST or
S-T. ST CS and ST CT for all §,T.

— If S and T are disjoint, ST is denoted by
the unique set having no members (0).
PC S forall Sand 0-S =20 for all S.

Union of two sets S, T

— The set with elements which belong to
at least S or T, denoted by SUT or
S+T. SCS+Tand T C S+ T for all
S,T. S+0=.S5 for all S.



Equivalence of two sets S, T

— If there is a 1 — 1 correspondence be-
tween members of S and members of T
(every member of S corresponds to just
one member of T and every member of
T corresponds to just one member of T)
then S~ T.

— If thereisa T C S and § ~ T then §
is said to be infinite, otherwise S is said
to be finite. The set of natural num-
bers N is of particular importance. N is
infinite, and any set S ~ N is said to be
countable.



Relations and Operations

Finite sequence: a set of n elements placed
ina 1—1 correspondence to theset {1,...,n}
arranged in order of succession. An ordered
pair is a sequence of 2 elements.

Dyadic or binary relation R over a set S:
a set of ordered pairs (x,y) where z,y €
S. If (a,b) € R then aRb means “a is in
the relation R to b" or ‘“relation R holds
between a and b.”

Finitary operation in a set S: let s, =
(r1,...,xn) be sequences of n elements.
To each such sequence, associate just one
element y € S. The set P of ordered pairs
(sn,y) is a finitary operation in S. s,Py
denotes a n-ary operation and is denoted



by P(x1,...,zn) =y. If n=1, then P is a
dyadic relation over S.

— Let S = N. Then addition (+), sub-
traction (—) etc. are examples of binary
operations in S.

If a n-ary operation P is defined for every
sequence s, of n elements of A, then S is
closed wrt P. A set S closed wrt one or
more finitary operations is called an alge-
bra. A subalgebra is a subset of an algebra
S which is self-contained wrt to the oper-
ations.

— N is closed wrt the binary operations of
+ and x, and N along with 4, x form
an algebra.

— The set £ of even numbers is a subalge-
bra of algebra of N/ with 4, x. The set
O of odd numbers is not a subalgebra.



— Let S C U and S’ C U be the set with

Answer—

elements of U not in S (the unary op-
eration of complementation). Let U =
{a,b,c,d}. The subsets of U with the
operations of complementation, inter-
section and union form an algebra. How
many subalgebras are there of this alge-
bra??



Equivalence Relations

Equivalence relation E over a set S is a
dyadic relation over S that satisfies the fol-
lowing properties:

Reflexive. For every a € S, aFa
Symmetric. If aEb then bFEa
Transitive. If aEb and bEc then aFEc

— Let S = N and aFEb iff a + b is even.
That is, E consists of all ordered pairs
(a,b) whose sum is even. This makes all
even numbers equivalent, and the odd
numbers equivalent

— Let S = {a,b,c,d} and zEy if x,y € {a, b}
or z,y € {c,d}. This makes a,b equiva-
lent to each other and c¢,d equivalent to
each other



Theorem. Any equivalence relation E over
a non-empty set S results in a parti-
tion of S into disjoint non-empty sub-
sets which contain all the members of
S.

— The subsets are called “equivalence
classes” or “blocks of the partition”.
Some special partitions: every block
contains exactly 1 element (zero par-
tition); at most 1 block contains more
than 1 element (singular partition); and
1 block contains all the elements (unity
partition).

Theorem. Any partition of a set S into
disjoint subsets such that every mem-
ber of S is in some subset results in an
equivalence relation E over S.



Partial Order

Gven an equality relation = over elements
of a set S, a partial order < over S is a
dyadic relation over S that satisfies the fol-
lowing properties:

Reflexive. For everya € S, a <a

Anti-Symmetric. If a < b and b < a then
a=>b

Transitive. If a <b and b<cthena<c
— Ifa<band a#bthena<>b
—b>ameansa <b, b>a meansa <b

— Ifa <borb=<athena,bare comparable,
otherwise they are not comparable



— A set S over which a relation of par-
tial order is defined is called a partially
ordered set

— It is sometimes convenient to refer to a
set S and a relation R defined over S
together by the pair < S, R >

— Examples of partially ordered sets < S, <>:

x S is a set of sets, §;1 X5 means §1 C
52

* S = N, n1 < nmo Means niy = no Of
there is a n3 € N such that ny +n3 =
no

x S is the set of equivalence relations
Eq,... over some set T, E; =X Eyy
means for u,v € T', uE v means uFE v
(that is, (u,v) € Er means (u,v) €
Eup).



— Given a set S = {a,b,...} if a < b and
there is no x € S such that a < £z < b
then b covers a or a iS a downward cover
of b

— Given a set S let Sy, D€ a set of down-
ward covers of b € S. If for all z € S,
x < b implies there is an a € S;,un S-T.
x = a < b, then S;4,,, IS said to be a
complete set of downward covers of b.

Diagrammatic representation of a partially
ordered set
{ab} {ac} {bc}



Partial order (contd.)

Let < S5,<>Dbeap.o.setand T CS

Least element of T
a€T st.VteT a=<1t

Greatest element of T
ac€T st.VteT art

Least element, if it exists,
is unique. If T'= S this is
the “zero”’ element

Greatest element, if it exists
If T =S then this is
the “unity” element

Minimal element of T
aceT AteT st. t<a
Minimal element need
not be unique

Maximal element of T
aeT AteT st.t>a
Maximal element need
not be unique

Lower bound of T
be S st.b<tVteT

Upper bound of T
beS st.b-tVteT

Glb g of T
b<gVb,g: lbs of T

If it exists, glb is unique

Lub g of T
b>gVb,g: ubs of T

If it exists lub is unique

If for every pair a,b € S, a < b or b < a
then S is totally ordered or is a chain. Any
subset of a chain is a chain.




Lattice

A lattice is a partially ordered set < 5, <>
in which every pair a,b € S has a greatest
lower bound (aMb or ab or meet) in S and
a least upper bound (alb or a4+ b or join)
in S

Theorem. A lattice is an algebra with the
binary operations of M and U

Properties of M and u
—allb=>bMa, and alb=>bUa

—al(bMe)=(aMb)Me, and ald(bliec) =
(ald) Uc

— Ifa<bthenalb=a, and allb=15

—al(alb) =a, and all(aTb) =a



Example

— Let S be all the subsets of {a,b,c}, and
for X, Y eSS, X <Y mean X CY, XTI
Y = XNY and XUY = XUY. Then

< S5,C> is a lattice.



Quasi-order

A quasi-order Q in a set S is a dyadic re-
lation over S that satisfies the following
properties:

Reflexive. For every a € S, aQa
Transitive. If aQb and bQc then aQc

— Differs from equivalence relation in that
symmetry is not required

— Differs from partial order in that no equal-
ity is defined, therefore anti-symmetry
property cannot be defined



Theorem. If a quasi-order @ is defined on a
set S = {a,b,...}, and we define a dyadic
relation E as follows: aFEb iff a@b and bQa,
then E is an equivalence relation.

Theorem. Let E partition S into subsets XY, ...

of equivalent elements. Let T'={X,Y,...}
and < be a dyadic relation in T mean-
ing X XY in T iff zQy in S for some
x € X,y €Y. Then T is partially ordered
by <.

A quasi-order order () over a set S results in
a partial ordering over a set of equivalence
classes of elements in S

In ILP, we will be concerned with cases
where S consists logical sentences (atoms
and clauses) and Q is the subsumption re-
lation or the implication relation



Subsumption ordering over atoms

Consider the set S of all atoms in some
language, and ST = SU{T,1l}. Let the
dyadic relation > be such that:

— T>=1forallles™t
—1l>=1forallle ST
— [ > m iff there is a substitution 6 s.t.

[0 =m, fori,meS

>~ IS a quasi-ordering known as ‘‘subsump-
tion”. A partial ordering results from the

partition of ST into the sets {[T]}, {[L]}, X1, ...

where [I] denotes all atoms that are alpha-
betic variants of [. That is, if [m € X
then there are substitutions p and o s.t.
Iy = m and mo = [. Thus, > is a partial



ordering over the set of equivalence classes
of atoms (Sg)

Example of subsumption ordering on atoms

— I = mem(A,[A,B]) = mem(1l,[1,2]) =
m since with 6 = {A/1,B/2}, 106 =m

— mem(Al,[Al, B1]),mem(A2,[A2,B2])...
are all members of the same equivalence
class

For atoms [,m € S, subsumption is equiv-
alent to implication

—Ifl=mthenl>m




Subsumption lattice of atoms

The p.o. set of equivalence classes of atoms
S}' IS a lattice with the binary operations

M and U defined on elements of Sg? as fol-
lows:

— [LIn ] =[L1], and [T] M [I] = [I]

— If l1,lo € S have mgu 6 then [I1] M [l»] =
[1160] = [I»0] otherwise [I1] T [Io] = [L]

— [LJul] =1[I], and [T] L] = [T]
— If 11 and l» have Igg m then [[{] U [l»] =

[m] otherwise [l1] U [l5] = [T]

The join operation or lub called /gg stands

for least-general-generalisation of atoms (Lab
Nos. 5, 6)



Example
St = { T, L, mem(1,[1,3]), mem(1,[1,2]), mem(2,[2,3]),
mem(1,[1, A]), mem(A, [4, B]), mem(A, [A, 3]), mem(A4,[B, C]),
mem/(A, [B|C]) mem(A, B) }

[T]

o
® [mem(A,B)]

® [mem(A,[B|C])]

® [mem(A,[B,C])]

[mem(A,[A,B])]

[mem(1,[1,A])] [mem(A,[A,3]])]

[mem(2,[2,3])]

[L]

[mem(1,[1,3])]



Finite Chains in the Lattice

It can be shown that if | = m (I covers
m) then there is a finite sequence I1,...,l,
s.t. I >11 > ...l, where [, is an alphabetic
variant of m

Progress from [; to [;41 is achieved by ap-
plying one of the following substitutions:

1. {X/f(X1,...,Xx)} where X is a variable in [;,
X1,...,X are distinct variables that do not ap-
pear in l;, and f is some k-ary function symbol
in the language

2. {X/c} where X is a variable in [;, and ¢ is some
constant in the language

3. {X/Y} where X,Y are distinct variables in [;

In ILP, these 3 operations define a “down-
ward refinement operator”



Subsumption ordering over Horn
clauses

Consider the set S of all Horn clauses in
some language, and ST = SU{Ll}. Let
O denote the empty clause and the dyadic
relation > be such that:

— T=0Ox=CforallCeST
— C =1 forall Ce St

— C > D iff there is a substitution 6 s.t.
coC D, forC,DeS

>~ IS a quasi-ordering known as ‘“‘subsump-
tion”. A partial ordering results from the
partition of ST into the sets {[L]}, X1,...
where [C] denotes all clauses that are subsume-
equivalent to C. This are not simply alpha-
betic variants (as in the case of atoms).



That is, if C,D € X; there are substitu-
tions 4 and o s.t. Cu C D and Do C C.
In fact, the subsume-equivalent class of C
is infinite, and [C] is usually represented
by its “smallest” member (reduced form).
Thus, > is a partial ordering over the set of
subsume-equivalent classes of clauses (Sg)

Example of subsumption ordering on clauses

— C = p(X,Y) <= pla,b) < gq(a,b) = D
since with 8 = {X/a,Y/b}, CO C D

— p(X, X) +,p(X, X1) <, p(X1,X2) < ...
are all in the same equivalence class.
p(X,X) < is the reduced form of this
class.

For clauses C,D € S, subsumption is not
equivalent to implication

—IfC>D then C =D




Subsumption lattice of Horn
clauses

The p.o. set of equivalence classes of Horn

clauses Sg' IS a lattice with the binary op-
erations M and U defined on elements of
S}' as follows:

— [L]17[C]l = [L], and [T] N [C] = [C]

— If C1,C> € S have an mgi D then [C1]M[C2] = [D]
otherwise [C1] M [C2] = [L]

— [LJu[C] =1[C], and [T]UC] = [T]

— If C71 and C5 have Igg D then [C1] U [C2] = [D]
otherwise [C1] U [C2] = [T]

The meet operation or glb called mgi stands for
most-general-instance. If the set of positive literals
in C1UC> have an mgu 6, then mgi(C1,C2) = (C1 U
C>)60. Otherwise mgi(C1,C2) = L

The join operation or lub called Igg stands for least-
general-generalisation of clauses (Lab Nos. 5, 6)



Example

st = {0 1,

15_tiger(tom) < has_stripes(tom), is_tawny(tom) ,
1s_tiger(bob) < has_stripes(bob), is_white(bob) ,
1s_tiger(tom) < has_stripes(tom) |,

1s_tiger(tom) < is_tawny(tom) ,

15_tiger(bob) < has_stripes(bob) ,

1s_tiger(bob) + is_white(tom) ,

1s_tiger(X) < has_stripes(X) ,

1s_tiger(X) + is_tawny(X) ,

15_tiger(X) + is_white(X) ,

is_tiger(X) < }



Diagram of p.o. set Sg:

(0]
®

[is_tig(X) <-]

[is tig(X) <-is_taw(X)]

[is tig(X) <- has_str(X)] [is_tig(X) <-is whi(X)]

[is_tig(tom) <- is_taw(tom)]
[is_tig(tom) <- has_str(tom)] [is_tig(bob) <- is_whi(bob)]

[is_tig(bob) <- has _str(bob)]

[is_tig(tom) <- has_str(tom), is_taw(tom)] [is_tig(bob) <- has_str(bob), is whi(bob)]

[ L]



NoO Finite Chains in the Lattice

The existence of finite chains in lattices
of atoms ordered by subsumption does not
carry over to Horn clauses ordered by sub-
sumption.

T his follows from the observation that there
are clauses which have no finite and com-
plete set of downward covers

This makes it impossible to devise an ILP
program that uses a refinement operator
that is both complete and non-redundant



Relative Subsumption ordering
over Horn clauses

Consider Horn clauses C, D and a set B:

D : gfather(henry, john) <+

B : father(henry, jane) <
father(henry, joe) <
parent(jane, john) <
parent(joe, robert) <—

C: gfather(X,Y) < father(X,Z),parent(Z,Y)

Now C ¥ D. But C > D’ where D’

gfather(henry, john) < father(henry, jane),
father(henry, joe),

parent(jane, john)
parent(joe, robert)

Relative subsumption C > D ifC > 1.(D, B)
IS @ quasi-ordering

— 1(B, D) may not be Horn

— 1(B, D) may not be finite



Relative Subsumption Lattice over
Horn clauses

Lattice only if B is a finite set of positive
ground literals

Least upper bound of Horn clauses C4,C>

lggB(Cl7 02) — lgg(J—(B) Cl): J—(Ba 02))

Greatest lower bound of Horn clauses C4, C>

glbb(cla CQ) — glb(J—(Ba Cl)7 J—(Ba CQ))

T he non-existence of finite chains in lat-
tices of Horn clauses ordered by subsump-
tion carries over to the lattice of clauses
ordered by relative subsumption



Subsumption ordering over Horn
clause-sets

Consider the set S of all finite Horn clause-
sets in some language, and ST =S U {L}.
Let »=p denote subsumption relation over
Horn clauses and the dyadic relation > be
such that:

— T={0O}>=Tforall TesSTt
—T>1 forall TelS

—Th =15 iffVD eT> 3C €17 s.t. C =9 D

> 1S a quasi-ordering known as ‘‘subsump-
tion”. A partial ordering results from the
partition of S into the sets {0}, X1,... where
[T'] denotes all clause-sets that are subsume-
equivalent to 7. Two theories 17,15 are
subsume equivalent iff Ty > T and 15 > 17



Example of subsumption ordering on clause-
sets

{mem(A, [A|B]) +-,mem(A, [B, A|C]) <}
-

{mem(1,[1,2]) +,mem(2,[1,2]) +}



Subsumption lattice of Horn
clause-sets

It can be shown that the p.o. set of equiv-
alence classes of Horn clause-sets SE IS a
lattice with the binary operations M (glb)
and U (lub) defined on elements of S}' (up
to subsume-equivalence)

Given a pair 11,75 € Sg
lub(T1,T>) =T UT>

Given a pair Ty,1T5 € Sg

(C1,C2) €Th X T
and C7,C5 are variants

glb(T1, T2) = ¢ gsu(C1,C3)
of C'1,C> std. apart

where, using the definition mg: of Horn
clauses

ciucl if C1,C> headless
QSH(CLCQ):{ L- 2 Ls 2

mgi(C1,C») otherwise



No Finite Chains in the Lattice

The non-existence of finite chains in lat-
tices of Horn clauses ordered by subsump-
tion carries over to Horn clause-sets or-
dered by subsumption.



T he implication ordering

In a manner analogous to subsumption, we
can define a quasi-ordering based on impli-
cation between clauses (clause-sets)

C>=Dif C=D

and a quasi-ordering based on relative im-
plication

C=pDif BU{C}|=D

T he partial ordering over the resulting equiv-
alence classes is not a lattice (lubs and glbs
do not always exist)



Subsumption and Implication

The principal generality orderings of interest
are subsumption (>4) and implication (t|:)

For clauses C, D, subsumption is not equiva-
lent to implication

if C >p D then C§|:D
but

not vice — versa

For example
C : natural(s(X)) < natural(X)

D : natural(s(s(X))) < natural(X)



The Subsumption Theorem

A key theorem linking subsumption and impli-
cation

If > is a set of clauses and D is a clause,
then > = D iff D is a tautology, or
there exists a clause D’ =y D which can
be derived from 3> using some form of
resolution.

When > contains a single clause C then the
only clauses that can be derived are the result
of self-resolutions of C

Thus the difference between C §|: D and C ¢
D arises when C is self-recursive or D is tau-
tological



Comparing Generality Orderings

Given a set of clauses S, clauses C, D €
S and quasi-orders >1 and >o on S,
then >q is stronger than >o if C >»
D implies C >»1 D. 1If also for some
C,DeS C¥>D and C >1 D then >
Is strictly stronger than >o

The implication ordering is strictly stronger
than the subsumption ordering



Other Generality Orderings

Quasi-orders that are increasingly weaker can
be devised from stronger ones. For example:

- Cr=_Diff CED

— C 7y iff there is a substitution 8 s.t. C C D

— C =g D iff every literal in D is compatible
to a literal in C and C =y D.

- C ZQ’/ D iff |C| > |D| and C tg/ D

We would like the strongest ordering that is
practical



Tractability

Logical implication between clauses is un-
decidable (even for Horn clauses)

Subsumption is decidable but NP-complete
(even for Horn clauses)

Restrictions to the form of clauses can make
subsumption efficient

— Determinate Horn clauses. There exists
an ordering of literals in C and exactly
one substitution 8 s.t. C C D

— k — local Horn clauses. Partition a Horn
clause into k ‘“disjoint” sub-parts and
perform k independent subsumption tests



More problems with

We have already looked at the lattice of
clauses (quasi-)ordered by subsumption >4

T he lattice structure implies the existence
of lubs (least generalisations) and glbs (great-
est specialisations) for pairs of clauses

The same is not true for the implication
quasi-ordering i,:

Order | lub glb
>0 VARV
> = X 4/

(for restricted languages lubs for Z = may well
exist)



Practical Generality Ordering

The strongest quasi-order that is practical
appears to be subsumption

Even that will require restrictions on the
clauses being compared



Refinement Operators
Refinement operators are defined for a S
with a quasi-ordering >

— p is a downward refinement operator if
VC € S:p(C)C{D|D € S and C > D}

— 0 IS an upward refinement operator if

vC e S:6(C)C{D|D €S and D > C}

Desirable properties of p (and dually §)

1. Locally Finite. VC € S: p(C) is finite
and computable.

2. Complete. VC = D: JE € p*(C) s.t.
E~D

3. Proper. YVC € S: p(C) C{D|D € Sand C »
D}



Refinement Operators under =g

Example. With an equality theory = /2,
D € p(C) if:

p(Xl,XQ,...,an) if C =0 and p/n, € L
D = and the X; are distinct

C U {-l} otherwise
where
(V=W where V, W occur in C
V = f(X1,X2,...,Xn,) where V occursin C
[ = and f/ny € L and
o the X, are distinct
q(Xl,XQ,...,an) where g/ng, € L
\ and the X; occur in C

There are no upward (downward) refine-
ment operators that are locally finite, com-
plete and proper for sets of clauses ordered
by =



