Introduction to proof theory

Proof theory considers the mechanics of
generating a set of sentences from others
Basics of proof theory

1. Elements of proof theory

2. Theorem proving and proof
procedures

3. Resolution for propositional logic

4. Substitutions, and resolution for 15¢
order logic

5. SLD resolution

Elements of proof theory

Proof theory considers the “derivability”
of a sentence given a set of inference
rules R

— The sentences given initially are called
the axioms, and those derived are
theorems (syntactic consequences)

A sentence is derivable from a set of
axioms S using R: S Fp s

— Axioms can be logical (valid sentences
of logic) or non-logical (problem
specific sentences in logic)

Axioms 4+ R = Inference system

Axioms + all theorems = Theory

— A theory is consistent iff there is no
sentence s s.t. the theory contains
both s and ~ s

Soundness and completeness

We would like theorems derived to be
logical consequences of the axioms
provided

— We can then be sure of the
correctness of the theorem in the
intended model for the axioms

— Remember, logical consequences of
the axioms are true in all models for
the axioms

This property depends entirely on the
inference rules chosen, and those that
have this property are called sound

— if S Frp s then S = s

— Examples of sound inference rules:

modus ponens {q,p < q} F p
modus tollens {~p,p < q} F ~q
We would also like to derive all logical

consequences, and rules with this
property are said to be complete

— if SE=sthen S Fp s

ThatiSS|=S = S kg s

Proof procedures

Axioms and inference rules are not
enough. We need a strategy to apply the
rules.

— Inference system -+ strategy = Proof
procedure

For logic programs:
— 1 inference rule: resolution

— Strategy: Selected Linear Definite
(SLD)

— Proof procedure: SLD-resolution

Resolution for propositional logic

Consider the clauses:
C1: is_dangerous < 1is_cheetah

022

1s_cheetah < is_carnwvore, has_tawny_colour, has_dark_spots

— The resolvent of C'{,C» is the clause:

1s_dangerous 4 1s_carnivore, has_tawny_colour, has_dark_spots
— Remember
C'1: is_dangerousV ~ is_cheetah

Co: is_cheetahV ~ 1s_carnivoreV ~ has_tawny_colourV ~
has_dark_spots

C': 1s_dangerousV ~ 1s_carnivoreV ~ has_tawny_colourV ~
has_dark_spots

— ('1,C> are called the parent clauses,
and is_cheetah is the the literal that is
resolved upon

Soundness of resolution
A single resolution step does the
following:
— Fromp < gandgqg < r
— Inferp < r
Since resolution is sound, we can always

add the clauses inferred to the original
program

Completeness of resolution

Resolution has these properties

— Consider a set of clauses s.t. each
clause has at most 1 positive literal.
Such clauses are called Horn clauses

— If a set of Horn clauses is unsatisfiable
then resolution will derive the empty
clause. Resolution is thus “refutation
complete”

— However, it is not “affirmation
complete”. That is, if P = s, then it

need not follow that P F s using
resolution

{Pq}tEPq

— But, if PU{~ s} F 0O using resolution
then PU{~ s}t =0o0r PEs

Resolution in 1% order logic:
substitutions

Recall the clauses:
Cq: gparent(X,Z) ¢ parent(X,Y),parent(Y,Z)

Co : parent(tom,jo) <

From earlier lectures recall that values
were assigned to variables as
computation proceeded. C'1 and

C'> can can be resolved in one of two ways:

c2 Cl c2 c1
\/X]tom Y/ j o} \/Y/tom Zl j o}
C3: gparent(tom Z) <- parent(jo,2) C3: gparent(X jo) <- parent(X tom

— Constructing resolvents requires
“substituting” some terms for
variables (exactly which depends on
literals being resolved)

— A mapping from variables to terms is
called a substitution

Applying a substitution to a sentence
gives a “substitution instance of” that
sentence

s =p(X,Y,£(2)) and 6 = {X/a,Y /b, 7/ £(d)}

s0 = p(a,b, f(f(d)))

We usually require the following
properties of substitutions

1. They should be functional, i.e. each
variable to the left of the / should be
distinct

2. Idempotence, that is (s8)0 = 6. Each
term to the right of / should not
contain any variable that occurs to
the left of /

Renaming

Substitution?

{X/Y,Y/tom}
{X/tom, X/j0,Y /peter}
{X/tom,Y /tom}
{X/f(X),Y/a}

Resolution in 1% order logic:
unification

For a single resolution step, we must
somehow “match” the negative literal of
one clause with the positive literal of
another

Cq : gparent(X,Z)V ~ parent(X,Y)V ~ parent(Y, Z)

Co : parent(tom, jo)

— What substitution 8 would make the
literals complementary? That is
parent(tom, jo)0 = parent(X,Y)6

0 = {X/tom,Y/jo} is said to be a
unifier for the literals

—Is0={Y/f(a),X/a,Z/a} a unifier for
p(f(X),Z) and p(Y,a)?

— What about 8 ={Y/f(X),Z/a}?

Some substituitions are “more general”
than others in that they impose less
severe constraints on the variables

Most general unifier 6:

— Let s1 s» be two atoms (or terms)
and 6 a unifier. Let o be some other
unifier for s; 5. For every o # 6 that
unifies sy o, there is a substituition u
St. o=0-pu

pP(f (X, 2) p(Y, a)
(Vt(a), Xa Za)

p(f(a). a)
' a
P(F(X). %)
{YIt(X), Z/a}

p(f(X),2) p(Y, a)

Resolution with 1%-order clauses

Step 0. Given a pair of clauses:
Cq : likes(steve, X) < buys(X,tlp_book)

Co 1 buys(X,tlp_book) < sensible(X),rich(X)

Step 1. Rename all variables apart.
Cq : likes(steve, A) + buys(A,ilp_book)

Co @ buys(B,ilp_book) < sensible(B),rich(B)

Step 2. Identify complementary literals and see if
mgu exists.

buys(B,ilp_book)d = buys(A,ilp_book)d

o = {A/B}

Step 3. Apply 6 and form resolvent C.

1. Let 019 = h]_VNllVNlQ...\/Nlj

2. Let 029 = ll\/leVNmQ...\/Nmk

3. Then C=hl\/le\/...VNmkVNZQ...VNl‘

Earlier example:

C: likes(steve, B) <+ sensible(B),rich(B)

Resolution remains sound and
refutation-complete with clausal logic
(proof not required here)

Clauses as sets and resolution

Clauses are often represented as sets of
literals

The clause

likes(X,Y) < vulcan(X),logical(Y)
can be represented as the set
{likes(X,Y), ~vulcan(X), -logical(Y)}

Applying a substitution to a clause yields
an instance of the clause

Let C =
{likes(X,Y), mvulcan(X), ~logical(Y)}
and 0 = {X/spock,Y /data}.

Cco =

Resolving a pair of clauses requires a

substitution that unifies a pair of
complementary literals

Let D = {logical(A), ~android(A)} and
6 ={A/Y}

DO =

The resolvent of C, D is £ =

{likes(X,Y), 7vulcan(X), ~android(Y)}
E=(C-{l})0u(D—-{m})d=
(Co—{i}0) U (DO — {m}0)

where [= —m6

Resolution and queries
Gven a program P, a query
qg(Xq1,Xo,...,Xn)? actually asks

— Are there any X1 X»... Xy s.t.
q(X1,Xo,..., Xp) is true

— That is, are there any X1 X»...X, s.t.
3X1X5... Xnq(Xq1,Xo,...,Xy) is a logical
consequence of P

— That is, (using the deduction theorem)
PU {N AX1Xo ... Xnq(X1, Xo, ..., Xn)} I: g

— Or PU{(— q(Xl,XQ,...,Xn)} |: g
— O, since resolution is sound and refutation

complete PU {«+ ¢(X1,X>o,...,Xp)} O

To see if there are variables X ... X, for
which the answer to ¢(Xq1,Xo,...,Xn) is
“yeSH:

1. Add query as a headless clause to P

2. See if O can be derived using resolution

3. If O can be derived, collect all substitutions
for X1...Xy in the derivation of O

T his still leaves open the proof strategy
to be used to derive O. Most logic
programming systems use a strategy
called SLD

Selected Linear resolution for
Definite clauses

Gven a program P, a query Q

qg(...),r(...),...7

1. Select a literal [; in @ using some
computation rule.

2. Select a clause C; from P that can resolve
with the selected literal. If no C); is possible
FAIL

3. Construct resolvent C using C; and « [; as
parents

4. If C = 0O STOP otherwise (Q = (', Goto Step
1

Resolution remains sound and refutation
complete with this strategy (proof not
required here)

Here is an example of SLD resolution

p(X) <- a(X), r(X
q(a) <-

r(a) <-
p(a)?
<-p(a) P(X) <- q(X), r(X)

\/(/a}

<q(a), r(a r@ <-

V4

<q@ q(a) <-

N

]

Usually, a SLD-resolution proof is shown
as a search tree where each node in the
tree is a resolvent. The root node is the
query < q(...)...? Such trees are called
SLD-trees

— Search trees that we considered under

“‘computations and answers” were
SLD-trees. Answer-substitutions for
variables in the query are obtained by
collecting up substitutions from root
to O in a SLD-tree

— Draw the SLD-tree for the previous
program for the query p(X)?

Recall that besides the proof-strategy, a
practical implementation also requires a
method to search the SLD tree

— This could cause problems in finding a
path from root to O even if one
existed in the tree

A drawback: evaluating term
equality

The resolut_ion_ prpcedure as descr_ibed
here has a I|r_n|tat|on concerned with
term evaluation

— Consider a function sqr/1 that accepts a
natural number and returns its square

— The mgu algorithm cannot unify p(sqr(2))
and p(2)

Extensions are possible to overcome this

— Resolution with “paramodulation” performs
term rewrites to achieve this

— But, logic programming systems use a special
predicate that forces term evaluation

— Thus, p(sqr(2)) is usually written as
X is 2% 2,p(X). p(X) unifies with p(4) after
forced evaluation the value of X by the ¢s/2
predicate

