Introduction to proof theory

Proof theory considers the mechanics of generating a set of sentences from others

Basics of proof theory

- 1. Elements of proof theory
- 2. Theorem proving and proof procedures
- 3. Resolution for propositional logic
- 4. Substitutions, and resolution for 1^{st} order logic
- 5. SLD resolution

Elements of proof theory

Proof theory considers the "derivability" of a sentence given a set of inference rules \mathcal{R}

- The sentences given initially are called the axioms, and those derived are theorems (syntactic consequences)

A sentence is derivable from a set of axioms S using \mathcal{R} : $S \vdash_{\mathcal{R}} s$

Axioms can be *logical* (valid sentences of logic) or *non-logical* (problem specific sentences in logic)

 \mathbf{A} xioms + \mathcal{R} = Inference system

 \mathbf{A} xioms + all theorems = Theory

— A theory is consistent iff there is no sentence s s.t. the theory contains both s and $\sim s$

Soundness and completeness

We would like theorems derived to be logical consequences of the axioms provided

- We can then be sure of the correctness of the theorem in the intended model for the axioms
- Remember, logical consequences of the axioms are true in all models for the axioms

This property depends entirely on the inference rules chosen, and those that have this property are called *sound*

- if $S \vdash_{\mathcal{R}} s$ then $S \models s$
- Examples of sound inference rules:

modus ponens
$$\{q, p \leftarrow q\} \vdash p$$
 modus tollens $\{\sim p, p \leftarrow q\} \vdash \sim q$

We would also like to derive *all* logical consequences, and rules with this property are said to be *complete*

$$-$$
 if $S \models s$ then $S \vdash_{\mathcal{R}} s$

That is
$$S \models s \equiv S \vdash_{\mathcal{R}} s$$

Proof procedures

Axioms and inference rules are not enough. We need a strategy to apply the rules.

Inference system + strategy = Proof procedure

For logic programs:

- 1 inference rule: resolution
- Strategy: Selected Linear Definite(SLD)
- Proof procedure: SLD-resolution

Resolution for propositional logic

Consider the clauses:

 $C_1: is_dangerous \leftarrow is_cheetah$

 $C_2: \\ is_cheetah \leftarrow is_carnivore, has_tawny_colour, has_dark_spots$

- The *resolvent* of C_1, C_2 is the clause:

C:

 $is_dangerous \leftarrow is_carnivore, has_tawny_colour, has_dark_spots$

Remember

 C_1 : $is_dangerous \lor \sim is_cheetah$

 $C_2: is_cheetah \lor \sim is_carnivore \lor \sim has_tawny_colour \lor \sim has_dark_spots$

C: $is_dangerous \lor \sim is_carnivore \lor \sim has_tawny_colour \lor \sim has_dark_spots$

- C_1, C_2 are called the *parent* clauses, and $is_cheetah$ is the the literal that is resolved upon

Soundness of resolution

A single resolution step does the following:

- From $p \leftarrow q$ and $q \leftarrow r$
- Infer $p \leftarrow r$

Since resolution is sound, we can always add the clauses inferred to the original program

Completeness of resolution

Resolution has these properties

- Consider a set of clauses s.t. each
 clause has at most 1 positive literal.
 Such clauses are called Horn clauses
- If a set of Horn clauses is unsatisfiable then resolution will derive the empty clause. Resolution is thus "refutation complete"
- However, it is not "affirmation complete". That is, if $P \models s$, then it need not follow that $P \vdash s$ using resolution

$$\{p \leftarrow, q \leftarrow\} \models p \leftarrow q$$

- But, if $P \cup \{\sim s\} \vdash \Box$ using resolution then $P \cup \{\sim s\} \models \Box$ or $P \models s$

Resolution in 1^{st} order logic: substitutions

Recall the clauses:

 $C_1: gparent(X, Z) \leftarrow parent(X, Y), parent(Y, Z)$

 C_2 : $parent(tom, jo) \leftarrow$

From earlier lectures recall that values were assigned to variables as computation proceeded. C_1 and C_2 can can be resolved in one of two ways:

Constructing resolvents requires
 "substituting" some terms for
 variables (exactly which depends on
 literals being resolved)

 A mapping from variables to terms is called a *substitution*

Applying a substitution to a sentence gives a "substitution instance of" that sentence

```
s = p(X, Y, f(Z)) \text{ and } \theta = \{X/a, Y/b, Z/f(d)\} s\theta = p(a, b, f(f(d)))
```

We usually require the following properties of substitutions

- They should be functional, i.e. each variable to the left of the / should be distinct
- 2. Idempotence, that is $(s\theta)\theta = \theta$. Each term to the right of / should not contain any variable that occurs to the left of /

Renaming	Substitution?
$\overline{\{X/Y,Y/tom\}}$	
$\{X/tom, X/jo, Y/peter\}$	
$\{X/tom,Y/tom\}$	
$\{X/f(X),Y/a\}$	

Resolution in 1^{st} order logic: unification

For a single resolution step, we must somehow "match" the negative literal of one clause with the positive literal of another

 C_1 : $gparent(X, Z) \lor \sim \underline{parent(X, Y)} \lor \sim parent(Y, Z)$

 C_2 : parent(tom, jo)

- What substitution θ would make the <u>literals</u> complementary? That is $parent(tom, jo)\theta = parent(X, Y)\theta$
 - $\theta = \{X/tom, Y/jo\}$ is said to be a *unifier* for the literals
- Is $\theta = \{Y/f(a), X/a, Z/a\}$ a unifier for p(f(X), Z) and p(Y, a)?
- What about $\theta = \{Y/f(X), Z/a\}$?

Some substituitions are "more general" than others in that they impose less severe constraints on the variables

Most general unifier θ :

- Let s_1 s_2 be two atoms (or terms) and θ a unifier. Let σ be some other unifier for $s_{1,2}$. For every $\sigma \neq \theta$ that unifies $s_{1,2}$, there is a substituition μ s.t. $\sigma = \theta \cdot \mu$

Resolution with 1^{st} -order clauses

Step 0. Given a pair of clauses:

 C_1 : $likes(steve, X) \leftarrow buys(X, ilp_book)$

 C_2 : $buys(X, ilp_book) \leftarrow sensible(X), rich(X)$

Step 1. Rename all variables apart.

 C_1 : $likes(steve, A) \leftarrow buys(A, ilp_book)$

 C_2 : $buys(B, ilp_book) \leftarrow sensible(B), rich(B)$

Step 2. Identify complementary literals and see if mgu exists.

$$buys(B, ilp_book)\theta = buys(A, ilp_book)\theta$$

 $\theta = \{A/B\}$

Step 3. Apply θ and form resolvent C.

1. Let
$$C_1\theta = h_1 \lor \sim l_1 \lor \sim l_2 \ldots \lor \sim l_j$$

2. Let
$$C_2\theta = l_1 \lor \sim m_1 \lor \sim m_2 \ldots \lor \sim m_k$$

3. Then
$$C = h_1 \lor \sim m_1 \lor \ldots \lor \sim m_k \lor \sim l_2 \ldots \lor \sim l_j$$

Earlier example:

 $C: likes(steve, B) \leftarrow sensible(B), rich(B)$

Resolution remains sound and refutation-complete with clausal logic (proof not required here)

Clauses as sets and resolution

Clauses are often represented as sets of literals

The clause $likes(X,Y) \leftarrow vulcan(X), logical(Y)$ can be represented as the set $\{likes(X,Y), \neg vulcan(X), \neg logical(Y)\}$

Applying a substitution to a clause yields an instance of the clause

Let
$$C = \{likes(X,Y), \neg vulcan(X), \neg logical(Y)\}$$
 and $\theta = \{X/spock, Y/data\}.$
$$C\theta =$$

Resolving a pair of clauses requires a

substitution that unifies a pair of complementary literals

Let
$$D = \{logical(A), \neg android(A)\}$$
 and $\theta = \{A/Y\}$

$$D\theta =$$

The resolvent of
$$C, D$$
 is $E = \{likes(X, Y), \neg vulcan(X), \neg and roid(Y)\}$

$$\mathbf{E} = (C - \{l\})\theta \cup (D - \{m\})\theta =$$
$$(C\theta - \{l\}\theta) \cup (D\theta - \{m\}\theta)$$

where
$$l\theta = \neg m\theta$$

Resolution and queries

Gven a program P, a query $q(X_1, X_2, ..., X_n)$? actually asks

- Are there any $X_1X_2...X_n$ s.t. $q(X_1, X_2, ..., X_n)$ is true
- That is, are there any $X_1X_2...X_n$ s.t. $\exists X_1X_2...X_n q(X_1,X_2,...,X_n)$ is a logical consequence of P
- That is, (using the deduction theorem) $P \cup \{ \sim \exists X_1 X_2 \dots X_n q(X_1, X_2, \dots, X_n) \} \models \Box$
- $\text{ Or } P \cup \{\leftarrow q(X_1, X_2, \dots, X_n)\} \models \Box$
- Or, since resolution is sound and refutation complete $P \cup \{\leftarrow q(X_1, X_2, ..., X_n)\}$ ⊢ □

To see if there are variables $X_1 ... X_n$ for which the answer to $q(X_1, X_2, ..., X_n)$ is "yes":

- 1. Add query as a headless clause to P
- 2. See if □ can be derived using resolution

3. If \square can be derived, collect all substitutions for $X_1 \ldots X_n$ in the derivation of \square

This still leaves open the proof strategy to be used to derive □. Most logic programming systems use a strategy called **SLD**

Selected Linear resolution for Definite clauses

Gven a program P, a query Q $q(\ldots), r(\ldots), \ldots$?

- 1. Select a literal l_i in Q using some computation rule.
- 2. Select a clause C_i from P that can resolve with the selected literal. If no C_i is possible FAIL
- 3. Construct resolvent C using C_i and $\leftarrow l_i$ as parents
- 4. If $C = \square$ STOP otherwise Q = C, Goto Step 1

Resolution remains sound and refutation complete with this strategy (proof not required here)

Here is an example of SLD resolution

Usually, a SLD-resolution proof is shown as a search tree where each node in the tree is a resolvent. The root node is the query $\leftarrow q(\ldots)$? Such trees are called SLD-trees

Search trees that we considered under

"computations and answers" were SLD-trees. Answer-substitutions for variables in the query are obtained by collecting up substitutions from root to □ in a SLD-tree

- Draw the SLD-tree for the previous program for the query p(X)?

Recall that besides the proof-strategy, a practical implementation also requires a method to search the SLD tree

 This could cause problems in finding a path from root to □ even if one existed in the tree

A drawback: evaluating term equality

The resolution procedure as described here has a limitation concerned with term evaluation

- Consider a function sqr/1 that accepts a natural number and returns its square
- The mgu algorithm cannot unify p(sqr(2)) and p(2)

Extensions are possible to overcome this

- Resolution with "paramodulation" performs term rewrites to achieve this
- But, logic programming systems use a special predicate that forces term evaluation
- Thus, p(sqr(2)) is usually written as X is 2*2, p(X). p(X) unifies with p(4) after forced evaluation the value of X by the is/2 predicate