First-order logic: terms, atoms
and quantifiers

Terms

— a constant, variable or functional

expression (a function applied to a
tuple of terms)

FExpression Term?
peter

X

<

log(X)
son(peter, peter)
log(son(peter, peter))

sin(log(cos(X/2)))

<X X<

Atoms

— predicate symbol applied to a tuple of
terms (son(spock, sarek))

Arity of function or predicate symbol is
the number of terms that each is applied

to. Thus, in f(a, f(b,Y,Z),q(r(X))), the
outermost f has arity 1, the inner f has
arity 3, ¢g,r have arity 1

— By convention, function and predicate
symbols are denoted by Name/Arity

Quantifiers

Y means ‘“for all”. It is a way of stating
something about all objects in the
world without enumerating them. For
example, VX likes(steve, X): steve
likes everyone

d means “there exists”. It is a way of
stating the existence of some object
in the world without explicitly
identifying it. For example,
3X likes(steve, X): steve likes someone

Animals again: monadic
predicates

The statement “Any animal that has
hair is a mammal’ can now be written as
a clause using monadic predicates (i.e.
predicates with arity 1)

VX is_.mammal(X) < has_hair(X)
Usually clauses are written without
explicit mention of the quantifiers:

is_mammal(X) < has_hair(X)

is_.mammal(X) < has_milk(X)

is_bird(X) <+ has_feathers(X)

A Datalog “expert’” system

Here are the rules with monadic
predicates:

is_mammal(X) :- has_hair(X).

is_mammal(X) :- has_milk(X).

is_bird(X) :- has_feathers(X).

is_bird(X) :- can_fly(X), has_eggs(X).

is_carnivore(X) :- is_mammal(X), eats_meat(X).

is_carnivore(X) :- has_pointed_teeth(X), has_claws(X), has_pointy_eyes(X).
cheetah(X) :- is_carnivore(X), has_tawny_colour(X), has_dark_spots(X).
tiger(X) :- is_carnivore, has_tawny_colour(X), has_black_stripes(X).
penguin(X) :- is_bird(X), cannot_fly(X), can_swim(X).

Now here are some statements particular

animals:
has_hair(peter). fat(peter).
has_green_eyes(peter). has_tawny_colour(peter).
eats_meat(peter). has_black_stripes(peter).
has_milk(bob). eats_meat(bob)
has_tawny_colour(bob). has_dark_spots(bob).

can_fly(bob).

What are the logical consequences of all
the clauses?

Monadic predicates: not
expressive enough

We can now make statements like
“Every son has a parent’:
VX3Y parent(Y) < son(X)

— But, for more complex relationships,
we will need predicates of arity > 1

— Usually, relationships can be described
pictorially by a directed acyclic graph
(DAG). Here is a parent-child relation:

— The parent-child relation could also

be specified as a set of ordered pairs
<X, Y >

— Or, as a set of definite clauses

parent(tom, jo) <—

parent(pam, jo) <
parent(tom,liz) <+
parent(pam,liz) <+

Full Datalog: variables, constants
and recursion

Consider the predecessor relation,
namely, all ordered tuples < X,Y > s.t.
X is an ancestor of Y. This set will
include Y's parents, Y’'s grandparents,
Y's grandparents’ parents, etc.

pred(X,Y) « parent(X,Y)

pred(X,Z) <+ parent(X,Y),parent(Y,Z)
pred(X,Z) <+ parent(X,Y1),parent(Y1,Y2),parent(Y2,2)

Variables and constants are not enough:
we need recursion
VX,Z X is a predecessor of Z if

1. X is a parent of Z; or
2. X is a parent of some Y, and Y is a predecessor of Z

The predecessor relation is thus:

é—\/\ uparentofu f\/s

““predecessor of” 7\

&

pred(X,Y) <« parent(X,Y)
pred(X,Z) < parent(X,Y),pred(Y, Z)

Datalog is not expressive enough

T o0 express arithmetic operations, lists of
objects, etc. it is not enough to simply
allow variables and constants as terms

— We will need function symbols

Consider Peano’s postulates for the set
of natural numbers N/

1. The constant 0 is in V

2. if X isin N then s(X) is in N/

3. There are no other elements in N/
4. Thereisno X in N s.t. s(X)=0

5. There are no X,Y in N s.t.
s(X)=s(Y) and X #Y

We can write a definite clause definition
for enumerating the elements of N/

— 1 constant symbol, 1 unary function
symbol

natural(0) <+
natural(s(X)) <+ natural(X)

— They are generated by asking:

natural(N)?

More functions: lists

Lists are simply collections of objects.
For e.g. 1,2,3...0r 1,a,dog,...

Lists are defined as follows:
1. The constant nzl is a list

2. If X is a term, and Y is a list then
(X,Y) is a list

— So the list 1,2,3 is represented as:
(1,.(2,.(3,nil)))

— Usually logic programming systems
use a “[" “]" notation, in which the
constant nil is represented as [] and
the list 1,2,3 is [1,2, 3]

— In this notation, the symbol | is used
to separate a list into a “head” (the
elements to the left of the |) and a
“tail” (the list to the right of the |).

Thus:

List Represented as Values of variables
[1,2,3] [X]Y] X=1Y =1[2,3]
[[1,2],3] [X]Y] X =1[1,2],Y = [3]

[1] [X]Y] X=1Y=]]

[1|2] [X|Y] X=1Y=2

[1] [X, Y]

1,2, 3] [X,Y|Z] X=1,Y =2,7 = [3]

Predicates |+ Variables |
Constants 4+ Functions

Prolog

Executing a logic program

Consider the following set of clauses S:

likes(john, flowers) <
likes(mary, food) <+
likes(mary, wine) <
likes(john,wine) <+
likes(john, mary) <«
likes(paul, mary) <

— If you entered these clauses into a
program capable of executing logic
programs, and asked:

likes(john, X)7?

— You will get a number of answers:

X = flowers
X = wine
X = mary

likes(john, X), likes(mary, X)7

X = wine

How this works will be examined in detail
later. For now, consider likes(john,X)?

1. Start search from 15¢ clause

2. Search for any clause whose head has
predicate likes/2, and 1% argument is
john

3. If no clause is found return otherwise
goto 4

4. X is associated (“instantiated”) with
the 24 argument of the hea d literal,
the clause position marked, and the
value associated with X is output

5. Start search from clause marked, and
goto 2

