Logic Programming and Learning

Logic Programming (LP) and Inductive Logic Programming (ILP)

When

II Semester 2003-2004

Who

Ashwin Srinivasan: ashwin@cse.iitd.ernet.in

How to do this course

Lectures. Main topics, theoretical results, some examples.

Laboratory. Lots of examples, practical use of LP and ILP.

Every week

- 1. Attend lectures
- 2. Do at least 1 laboratory session

Lecture Schedule

- 1. Propositional Logic Programming
- 2. First-order Logic Programming
- 3. Computations and Answers
- 4. Introduction to Model Theory
- 5. Introduction to Proof Theory
- 6. Proof Theory (contd.)
- 7. Subsumption Theorem, Generality Orderings and Lattices
- 8. Generality Orderings and Lattices
- 9. Introduction to ILP Theory
- 10. ILP Theory (contd.)
- 11. ILP Implementation
- 12. ILP Experimental Method
- 13. ILP Applications
- 14. Introduction to Learning Theory (if time permits)

Lab Schedule

- 1. Proplog
- 2. Datalog
- 3. Prolog
- 4. Introduction to ILP
- 5. Generalisation in ILP
- 6. Generalisation in ILP (contd.)
- 7. Scientific Discovery with ILP

Symbolic Logic as a computer language

- 2 stages in software development
- 1. Specification
 - usually not computer executable
 - correct
- 2. Implementation
 - computer executable
 - correct
 - efficient

Consider: $\underline{x} = (x_1 x_2 \dots x_n)$, a sequence of numbers

– Now examine the specifications:

S1 \underline{x} is ordered if $\forall i, j \ (i < j) \Rightarrow (x_i < x_j)$

S2 \underline{x} is ordered if $\forall i \ (x_i < x_{i+1})$

- But what about implementation?
 - * S1 is $O(n^2)$ but S2 is O(n)
 - * An implementation of S2 in C:

```
typedef struct listelem{
int val;
struct listelem *next;
}
typedef struct listelem *next;

ordered(x)
list(x);
{
  register list l;
  int xi, ok;

if (!x) return 0;
  xi = x->val; ok = 1;
  for (1 = x->next; l; l = l->next)
  if (!(ok = xi < l->val)) break;
  else xi = l->val;
  return (ok);
}
```

Logic programming is about writing specifications in symbolic logic *and* executing them directly on a computer

The standard formalism is as follows:

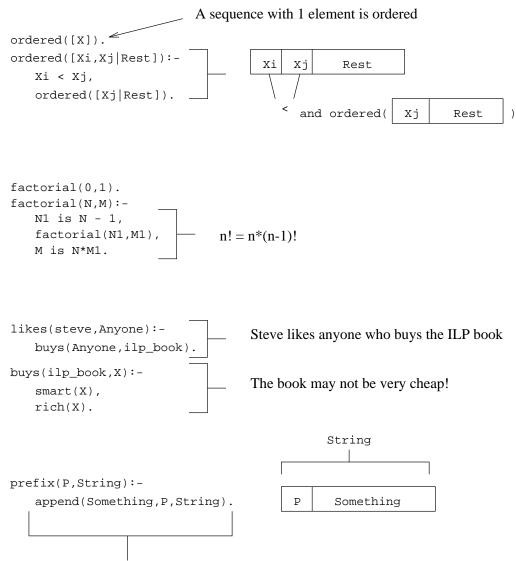
Specifications written in a subset of first-order predicate logic ("clausal form")

A particular inference system to execute statements written in clausal form ("resolution")

Historic aside

- 1965. Robinson discovers resolution
- **1972.** Kowalski introduces clausal form as programs
- 1973. Colmerauer implements Prolog
- **1976.** 1^{st} Logic Programming Workshop at Imperial College
- 1977. Clark links negation and finite failure
- 1981. Japan announces 5^{th} Generation Computer Systems project
- 1984. Lloyd publishes book

Examples of logic programs



P is a prefix of a string, if you can append something to P to give the string!

But, this is jumping ahead

We will start with propositional logic programs

Computing with propositions

Propositions are symbols to which we will assign a truth value of either true (t, or 1) or false (f, or 0) but not both. For e.g. $paris_is_in_england$ (false) $sarek_is_a_vulcan$ (true)

Usually the symbols $p, q \dots$ will be used to denote propositions.

Propositions may be joined together using connectives like \land (and), \lor (or), and \sim . Recall the truth-tables:

p	q	$p \wedge q$	$p \lor q$	$\sim p$	$\sim q$
\overline{f}	f	f	f	t	t
f	t	f	t	t	f
t	f	f	t	f	t
$_t$	t	t	t	f	f

One more truth-table is of interest. This concerns the connective \leftarrow . The

statement $p \leftarrow q$ is to be read as "if q then p".

p	q	$p \leftarrow q$
f	f	t
f	t	f
t	f	t
t	t	t

If you have not seen this before, it may be surprising. For e.g.

flatworld	human monkeys	$flatworld \leftarrow humanmonkeys$
f	f	t

Note: $p \leftarrow q \equiv p \lor \sim q \equiv \sim q \lor p$

Clauses

Statements of the form

$$p_1 \lor p_2 \ldots \leftarrow q_1 \land q_2 \ldots$$
 are called *clauses*

 $p_1 \lor p_2 \ldots$ is sometimes called the *head* of the clause, and $q_1 \land q_2 \ldots$ the *body*

If the head has exactly 1 proposition without a \sim , and the body does not have any \sim symbols, then the clause is called a definite clause. Thus:

Clause	Definite clause?
$p \leftarrow q \wedge r$	
$p \lor q \leftarrow r \land s$	×
$p \leftarrow q \land \sim r$	×
$p \leftarrow$	

A note on syntax

You may see the following variants:

- − The symbol \leftarrow written as ":-"
- The symbol ∧ written as ","
- The symbol ∨ written as ";"
- The statement $p \leftarrow$ written as simply "p"
- Clauses terminated with a "."

In the laboratory, the clause $p \leftarrow q \wedge r$ is written as:

A Proplog "expert" system

Here are some rules for identifying animals:

```
is_mammal :- has_hair.
is_mammal :- has_milk.
is_bird :- has_feathers.
is_bird :- can_fly, has_eggs.
is_carnivore :- is_mammal, eats_meat.
is_carnivore :- has_pointed_teeth, has_claws, has_pointy_eyes.
cheetah :- is_carnivore, has_tawny_colour, has_dark_spots.
tiger :- is_carnivore, has_tawny_colour, has_black_stripes.
tiger :- is_carnivore, has_tawny_colour, has_black_stripes.
penguin :- is_bird, cannot_fly, can_swim.
```

Now here are some statements about a particular animal:

has_hair. fat. lazy. big.

has_green_eyes. has_tawny_colour.

nice. eats_people.

eats_meat. has_black_stripes.

What are the logical consequences of all the clauses?

Proplog: not expressive enough

Suppose we wanted to represent facts about more than 1 animal

- Animals 1 (peter) and 2 (bob) are both hairy. We will need 2 propositions:
 has_hair_peter and has_hair_bob.
- But what about the clause is_mammal
 ← has_hair. That is, how do we
 derive the logical consequences that
 peter and bob are mammals?
- We need to replace the "mammal" clause with 2 new ones:

is_mammal_peter ← has_hair_peter is_mammal_bob ← has_hair_bob

Now, we have to also rewrite
 is_carnivore ← is_mammal, eats_meat.

Further, suppose we find out about a third animal (fred) ...

 Clearly, this is tedious. We want to be in a position to say:

Peter has hair Bob has hair

"Any animal that has hair is a mammal"

We need *predicates*, *functions* and *variables*

First-order logic: alphabet

- Constant symbols. Name specific objects. Start with a lower-case letter (peter, mcmxii etc.)
- Function symbols. Name a functional relationship between objects. Start with a lower-case letter (sin,cos, + etc.)
- Variable symbols. Stand for objects or functions without naming them explicitly. Start with an upper-case letter (X, Y etc.)
- **Predicate symbols.** Name a relation on the world of objects. Start with a lower-case letter $(son, \leq etc.)$