Logic Programming and
Learning

Logic Programming (LP)

and
Inductive Logic Programming
(ILP)

When
I Semester 2003—2004
Who
Ashwin Srinivasan: ashwin@cse.iitd.ernet.in

How to do this course

Lectures. Main topics, theoretical results,
some examples.

Laboratory. Lots of examples, practical use
of LP and ILP.

Every week
1. Attend lectures

2. Do at least 1 laboratory session

10.

11.

12.

13.

14.

Lecture Schedule

Propositional Logic Programming
First-order Logic Programming
Computations and Answers

Introduction to Model Theory

. Introduction to Proof Theory

Proof Theory (contd.)
Subsumption Theorem, Generality Orderings and Lattices

Generality Orderings and Lattices

. Introduction to ILP Theory

ILP Theory (contd.)

ILP Implementation

ILP Experimental Method
ILP Applications

Introduction to Learning Theory (if time permits)

Lab Schedule

Proplog
Datalog

Prolog

. Introduction to ILP

Generalisation in ILP
Generalisation in ILP (contd.)

Scientific Discovery with ILP

Symbolic Logic as a computer
language
2 stages in software development

1. Specification

— usually not computer executable
— correct

2. Implementation

— computer executable

— correct

— efficient
Consider: z = (x1x>...xn), A Sequence
of numbers

— Now examine the specifications:

S1 z is ordered if Vi,7 (1 < j) = (z; <

S2 zx is ordered if Vi (z; < z;41)

— But what about implementation?
x+ S1 is O(n?) but S2 is O(n)

* An implementation of S2 in C:

typedef struct listelem{
int val;
struct listelem *next;

}

typedef struct listelem *next;

ordered(x)
list(x);

{

register list 1;
int xi, ok;

if ('x) return O;

xi = x->val; ok = 1;

for (1 = x->next ; 1 ; 1 = 1->next)
if ('(ok = xi < 1->val)) break;
else xi = 1->val;

return (ok);

}

Logic programming is about writing
specifications in symbolic logic and
executing them directly on a computer

The standard formalism is as follows:

Specifications written in a subset of
first-order predicate logic (‘“clausal form™)

A particular inference system to execute
statements written in clausal form
(“resolution’)

Historic aside

1965. Robinson discovers resolution

1972. Kowalski introduces clausal form as
programs

1973. Colmerauer implements Prolog

1976. 15t Logic Programming Workshop at
Imperial College

1977. Clark links negation and finite failure

1981. Japan announces 5" Generation
Computer Systems project

1984. Lloyd publishes book

Examples of logic programs

A sequence with 1 element is ordered
ordered([X]). —

ordered([Xi, Xj | Rest]): - Xi | X Rest
Xi < X,
ordered([X | Rest]). \ /

< and ordered(| X Rest)

factorial (0,1).
factorial (N, M: -

Nl is N- 1,
factorial (N1, ML), n! = n*(n-1)!
Mis N*ML.

I kes(st eve, Anyone): - } Steve likes anyone who buys the | L P book
buys(Anyone, i | p_book).

buys(i | p_book, X): -
smart (X) The book may not be very cheap!

rich(X).

String
I

prefix(P,String): -
append(Soret hi ng, P, Stri ng). P Sorret hi ng

Pisaprefix of astring, if you can append something to P to give the string!

But, this is jumping ahead

— We will start with propositional logic
programs

Computing with propositions

Propositions are symbols to which we
will assign a truth value of either true (t,
or 1) or false (f, or 0) but not both.
For e.g. paris_is_in_england (false)
sarek_is_a_vulcan (true)

Usually the symbols p,q... will be
used to denote propositions.

Propositions may be joined together
using connectives like A (and), Vv (or),
and ~. Recall the truth-tables:

Pl q|pPANq|pVqg| ~p|~(q
Flr| f / t t
Flt| f / t | f
tl | f t | F |t
tt] ¢ t f | 7

One more truth-table is of interest. This
concerns the connective <. The

statement p « ¢ is to be read as “if g
then p”.

+ S
+ —h —H[Q
&+ o = T

If you have not seen this before, it may
be surprising. For e.g.

flatworld | humanmonkeys | flatworld < humanmonkeys

Clauses

Statements of the form
p1Vpr... < q1/Ngo...are called clauses

p1Vpo...Iis sometimes called the head
of the clause, and g1 A gy ... the body

If the head has exactly 1 proposition
without a ~, and the body does not have
any ~ symbols, then the clause is called
a definite clause. Thus:

Clause Definite clause?
p < qAT v
pVqg < rASs

X
p < gAN~r X
p v

A note on syntax

You may see the following variants:
— The symbol + written as *:-"

— The symbol A written as “,”

— The symbol v written as “}"

— The statement p < written as simply
“p

— Clauses terminated with a “.”

In the laboratory, the clause p < gAT7r is
written as:

A Proplog “expert” system

Here are some rules for identifying
animals:

is_.mammal :- has_hair.

is_.mammal :- has_milk.

is_bird :- has_feathers.

is_bird :- can_fly, has_eggs.

is_carnivore :- is_.mammal, eats_meat.

is_carnivore :- has_pointed_teeth, has_claws, has_pointy_eyes.
cheetah :- is_carnivore, has_tawny_colour, has_dark_spots.
tiger :- is_carnivore, has_tawny_colour, has_black_stripes.
tiger :- is_carnivore, has_tawny_colour, has_black_stripes.
penguin :- is_bird, cannot_fly, can_swim.

Now here are some statements about a
particular animal:

has_hair. fat.

lazy. big.
has_green_eyes. has_tawny_colour.
nice. eats_people.
eats_meat. has_black_stripes.

What are the logical consequences of all
the clauses?

Proplog: not expressive enough

Suppose we wanted to represent facts
about more than 1 animal

— Animals 1 (peter) and 2 (bob) are both
hairy. We will need 2 propositions:
has_hair_peter and has_hair_bob.

— But what about the clause is_.mammal
< has_hair. That is, how do we
derive the logical consequences that
peter and bob are mammals?

— We need to replace the “mammal”
clause with 2 new ones:

Is_mammal_peter < has_hair_peter
iIs_mammal_bob <+ has_hair_bob

— Now, we have to also rewrite
IS_carnivore <+ is_-mammal, eats_meat.

Further, suppose we find out about a
third animal (fred) ...

— Clearly, this is tedious. We want to be
in a position to say:

Peter has hair Bob has hair
“Any animal that has hair is a

mammal”’

We need predicates, functions and
variables

First-order logic: alphabet

Constant symbols. Name specific objects.
Start with a lower-case letter (peter,
memxit etc.)

Function symbols. Name a functional
relationship between objects. Start with
a lower-case letter (sin,cos, + etc.)

Variable symbols. Stand for objects or
functions without naming them explicitly.
Start with an upper-case letter (X, Y
etc.)

Predicate symbols. Name a relation on the
world of objects. Start with a lower-case
letter (son, < etc.)

