
Assignment 4: Winning the Funny Cup™!

Alright! This is now the grand finale that we’ve all been waiting for! There are about 19-20

teams, so we will form 4 groups of about 5 teams each. Each group will have a winner with

every team pitted against all other teams in the group (
n
C2 sets of matches per group), and the

winners from the 4 groups will compete for the Funny Cup. Here’s how it will all happen:

1. Implementation: Choose a name for your team, say FunnyTeam, and choose a name for

your class, say assg.funnycells.cells.FunnyTeamCellImpl.

2. Molecular communication rules: Your cell will be instantiated automatically through

scripts either as a RED (infected) cell or a GREEN (antibody) cell. The nature/color of the

cell isn’t important for this assignment, what is important is that you note the type specified

during instantiation of your cell, and produce molecules accordingly. That is, if your cell has

been instantiated of type assg.funnycells.server.CellState.INFECTED, you must behave as an

infected cell and produce infection molecules. Similarly, if it is of type

assg.funnycells.server.CellState.ANTIBODY, you must behave as an antibody. A code

snippet to parameterize this is given in the Appendix.

3. Game rules:

a. Each game will last for 120 seconds, and will be played on a 15x15 grid with 7 initial

cells per team and 12 susceptible cells. The maximum energy per cell will be 600000

molecular units. Energy renewals are not available. The layout of susceptible cells on

the grid will be random.

b. To win a game, the winning team must have more than 10 cells than the losing team

after 120 seconds, and the number of remaining susceptible cells must be less than or

equal to 5. Otherwise the game will be declared as a draw. This effectively means that

your aim is to increase the population of your cells to a little more than double of

your initial strength of 7, and not leave enough susceptible cells around to give a

chance to your opponent to make a comeback.

c. Each pair of teams will play a set of 6 games with each other – 2 points will be

awarded to the winner, or 1 each in case of a draw. The winner of a set will be

declared as the winner between the two teams.

d. After all the
n
C2 sets of matches are run per group, the winner from the group will

advance for the finals. If there is a tie in a group, the tie will be resolved by playing

another set of 6 matches between the tied teams, but this time on a clustered layout of

the susceptible cells.

e. The winners from the four groups will play another
4
C2 matches of 6 games each to

find the ultimate Funny Cup winner!

4. Testing: The funnygroup.pl script will be used to run games for an entire group. It

automatically starts the server and all the cells, so you don’t have to start the server

separately.

perl funnygroup.pl [group list file] [games per set] [timeout] [scenario]

Here, [group list file] is the list of teams in the group, with each line in the file containing a

CSV of team-name, class-name. [games per set] is 6, [timeout] is 120000, and [scenario] is

either random or cluster. For testing purposes, you can pit your own implementation against

itself by making a dummy group list file of 2 lines as follows:

FunnyTeam,assg.funnycells.cells.FunnyTeamCellImpl

FunnyTeamDuplicate,assg.funnycells.cells.FunnyTeamCellImpl

Let’s call it mygroup.lst. Then you can run this as:

perl funnygroup.pl mygroup.lst 6 120000 random

You can also test your implementation against the reference implementations, with and

without pheromones: assg.funnycells.cells.AdiPheCellImpl and

assg.funnycells.cells.AdiNopheCellImpl.

5. Submission: This will be in several stages.

a. April 12
th

demo: This version will be tested to confirm that your implementation

works correctly for both types of instantiations as INFECTED and ANTIBODY cells.

If it does not, you will have 2 days to turn in a corrected version otherwise you will

not be allowed to participate in the tournament.

b. April 15
th

mock drill: A mock drill of the entire tournament will be held. You will

have a chance to observe the strategies of your competitors and improve your

methods.

c. April 18
th

: Due date for the final version of your implementation.

d. April 19
th

: The Funny Cup tournament.

These deadlines are hard and will not be changed! You should also submit a report

explaining your strategy. Marking will be based on your report, the correctness of your

implementation, the strategy, and bonus marks will be awarded based on your performance

in the tournament.

Appendix

package assg.funnycells.cells;

import assg.funnycells.server.CellState;

import assg.funnycells.util.Configuration;

public class FunnyTeamCellImpl implements CellularProcesses {

 String myMolPrefix, opMolPrefix, infectionMol;

 Configuration config;

 public FunnyTeamCellImpl(Integer type, Integer energy, String cellId,

 RateLimBufferedReader in, RateLimPrintWriter out) {

 …

 …

 config = FunnyCell.getConfiguration();

 if(CellState.invNewType(type) == CellState.INFECTED) {

 myMolPrefix = config.getVal(Configuration.RECEPTORS,

 Configuration.START) +

 config.getVal(Configuration.RECEPTORS,

 Configuration.INFECTED);

 opMolPrefix = config.getVal(Configuration.RECEPTORS,

 Configuration.START) +

 config.getVal(Configuration.RECEPTORS,

 Configuration.ANTIBODY);

 infectionMol = config.getVal(Configuration.RECEPTORS,

 Configuration.START) +

 config.getVal(Configuration.RECEPTORS,

 Configuration.ANY) +

 config.getVal(Configuration.AFFECTORS,

 Configuration.INFECTION) +

 config.getVal(Configuration.RECEPTORS,

 Configuration.STOP);

 } else {

 myMolPrefix = config.getVal(Configuration.RECEPTORS,

 Configuration.START) +

 config.getVal(Configuration.RECEPTORS,

 Configuration.ANTIBODY);

 opMolPrefix = config.getVal(Configuration.RECEPTORS,

 Configuration.START) +

 config.getVal(Configuration.RECEPTORS,

 Configuration.INFECTED);

 infectionMol = config.getVal(Configuration.RECEPTORS,

 Configuration.START) +

 config.getVal(Configuration.RECEPTORS,

 Configuration.ANY) +

 config.getVal(Configuration.AFFECTORS,

 Configuration.IMMUNISATION) +

 config.getVal(Configuration.RECEPTORS,

 Configuration.STOP);

 }

 …

 …

 }

public void startCell() {

 // myMolPrefix is prefixed to molecules you produce for internal communication

 // opMolPrefix is what you look for while sensing for the opponent’s cells

 // infectionMol is the infection (or immunization) molecule

 …

}

}

