
Assignment 2

Counting Cells

This assignment is based on funny cells. Please look up the following webpage for details:

http://www.cse.iitd.ac.in/~aseth/assg/funnycells/funnycells.html In this assignment, you are

expected to program Counting Cells that can count the number of Susceptible Cells on the map

in a distributed manner.

Objective

The objective is to count the number of Susceptible Cells on the map. When multiple counting

cells are launched on an arbitrary sized map, each of them must participate in a counting process

such that at the end of this process, by accumulating results from all of your cells, the correct

number of Susceptible Cells present on the map can be found out.

Specifically, what your cells must do is:

1. Count susceptible cells in mutually exclusive portions of the map. Be careful to not double

count!

2. Communicate their counts among each other in a way that enables one of them to accumulate

the correct total

3. Log the final result to the console.

Note: It is easy to just have one cell count all the susceptible cells in the network, but that is not

the point of the assignment. Your goal should be to count the cells in the least possible time,

which implies that all cells must participate in the counting process and add up their results. This

is the fun part of the assignment, because you have to create your own protocols for reliable

communication in a decentralized manner!

Implementation

Name your class CountingCellImpl. As before, a stub CountingCellImpl.java is provided, in

which you have to fill in your implementation.

Communication

Remember that the cells cannot directly talk to one another. They can only manufacture

molecules and dump these molecules into the medium, and other cells in the neighborhood can

sense these molecules. Sensing consumes the molecule. You therefore have to develop your own

encoding schemes for molecular communication between your cells. Some hints to get you

started:

1. Susceptible cells continuously produce presence molecules of the type gggc-atat-attt-cccg,

where gggc is the molecule starting signature, cccg is the molecule ending signature, atat is

the broadcast destination, and attt is the presence indicator. So, the very first thing the

counting cells have to do is to move around and sense for presence molecules produced by

susceptible cells. This can be done by issuing the SENSECHEM command to the server,

indicating the prefix you want to sense as gggc-atat-attt. The server will respond with the

relative locations of any presence molecules, which you can be used to infer susceptible cells

in the neighborhood.

2. Keep in mind that susceptible cells produce presence molecules only at fixed intervals, and

these molecules also timeout after a while. So the counting cells have to be careful to not

move very fast and skip a susceptible cell. The lifetime of a molecule is defined by the

moltimeout parameter in the configuration file, and the default value is 100ms. The

susceptible cells produce presence molecules every ratetimeout times moltimeout, that is,

every 500ms.

3. Depending upon what strategy you use for counting, you may want to develop similar

presence molecules so that your counting cells can detect other counting cells in their

neighborhood. These can be molecules of the type gggc-atat-attt-xxxx-cccg, which are the

same as presence molecules by susceptible cells but with an additional quartet to signify that

they are presence molecules for counting cells. The molecules can then be dropped into the

medium with the DROPCHEM command.

4. Another thing to keep in mind is that you don’t want to sense your own presence molecules!

You can do this by delaying sensing to after your presence molecule has expired. And just to

confirm, you can also encode your cell-id into the xxxx portion of your presence molecule so

that you know whether it was your own molecule you sensed or somebody else’s.

5. When you want your cells to communicate their individual counts to each other, you again

have to encode that information on to a special molecule. You will have to develop your own

molecules, maybe something like gggc-agcg-xxxx-yyyy-cccg, where the xxxx portion can

indicate a counting molecule, and the yyyy portion can be the count encoded on to the a t c g

alphabet. Encoding the count can be as simple as finding the base-4 equivalent of the count,

and then substituting a for 0, t for 1, c for 2, and g for 3. Cells will then produce and consume

molecules through the DROPCHEM and SENSECHEM commands as before.

Logging your result

You are required to use the logger provided with the assignment to output your result. A Logger

object can be used to log messages to consoles or files at different levels of importance of the

message. This simply involves obtaining a reference of the default java.util.logging.Logger

instance. A default logger can be created with the following statement:

Logger logger = Logger.getDefaultLogger();

You can then log messages using the logger.info(String str) method.

At the end of the counting process, one cell must log a string to the console in the following

format:

SUSCEPTIBLE CELL COUNT = XXX

where XXX is the number of susceptible cells counted by your counting cells.

Testing

To test your program, your counting cells will be launched in a fixed pattern on a map of

arbitrary size and shape between 11x11 and 50x50. Starting from the second row, cells will be

launched two rows apart in column 0, i.e. at (1, 0), (4, 0), (7, 0), etc. As shown in the screenshot

below. A simple countingcelllaunch.pl script is also provided to help you test your assignment. It

can be launched as follows:

perl countingcellslaunch.pl [map width] [map height] [number of susceptible cells]

The script ensures that a square contains at the most one susceptible cell.

The map sizes used for testing will be such that there is one row vacant at the top and bottom

after launching cells two rows apart from each other. So you can assume that the network will be

of size from 0…(3k-1), where k is an integer.

Note that you can start the server as before, using the runserver.sh script. But remember to

change the map size in funnycells.conf whenever you want to run countingcellslaunch.pl with a

different map size.

Report

Your report should contain a description of your approach (algorithm) to the distributed counting

problem. Use diagrams wherever relevant and keep your description simple and brief. There are

no marks for being unreasonably wordy.

Submission Guidelines

You are expected to adhere to the following submission guidelines:

1. The assignment must be submitted on the moodle online course management system.

2. Your submission must contain 2 things: source code CountingCellImpl and your report in

pdf format.

3. Your submission must be a .tar.gz file named as your entry number. The archive must

contain one folder with the name as your entry number. This folder must further contain your

source file CountingCellImpl and your report.

