Assignment 1

1. Solve the following linear programs by the simplex method (by hand):
(a)

$$
\begin{aligned}
\operatorname{maximize} & 2 x_{1}+x_{2} \\
2 x_{1}+3 x_{2} & \leq 3 \\
x_{1}+5 x_{2} & \leq 1 \\
2 x_{1}+x_{2} & \leq 4 \\
4 x_{1}+x_{2} & \leq 5 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

(b)

$$
\begin{aligned}
\operatorname{maximize} & 3 x_{1}+x_{2} \\
x_{1}-x_{2} & \leq-1 \\
-x_{1}-x_{2} & \leq-3 \\
2 x_{1}-x_{2} & \leq 2 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

2. Use the simplex method to describe all the optimal solutions to the following:

$$
\begin{aligned}
\text { maximize } & 2 x_{1}+3 x_{2}+5 x_{3}+4 x_{4} \\
x_{1}+2 x_{2}+3 x_{3}+x_{4} & \leq 5 \\
x_{1}+x_{2}+2 x_{3}+3 x_{4} & \leq 3 \\
x_{1}, x_{2}, x_{3}, x_{4} & \geq 0
\end{aligned}
$$

3. Prove or disprove: A feasible dictionary whose row about the objective function reads $z=v+$ $\sum_{j \in N} \bar{c}_{j} x_{j}$ describes an optimal solution if and only if $\bar{c}_{j} \leq 0$ for all $j \in N$ (recall that N denotes the set of non-basic variables).
4. Suppose that a linear programming problem has the following property: its initial dictionary is not degenerate and, when solved by the simplex method, there is never a tie for the choice of leaving variable.
(a) Can such a problem have degenerate dictionaries? Explain.
(b) Can such a problem cycle? Explain.
5. Consider the following linear program where the variables are $x_{1}, x_{2}, \ldots, x_{n}$. Note that $b_{1}, b_{2}, \ldots, b_{n}$ are constants such that $1=b_{1} \ll b_{2} \ll b_{3} \ldots \ll b_{n}$. For example, you can take b_{i} to be 100^{i-1}.

$$
\begin{aligned}
& \text { maximize } \sum_{j=1}^{n} 10^{n-j} x_{j}-\frac{1}{2} \sum_{j=1}^{n} 10^{n-j} b_{j} \\
& 2 \sum_{j=1}^{i-1} 10^{i-j} x_{j}+x_{i} \leq 2 \sum_{j=1}^{i-1} 10^{i-j} b_{j}+b_{i} \quad \text { for } i=1,2, \ldots, n \\
& x_{j} \geq 0 \quad \text { for } j=1,2, \ldots, n
\end{aligned}
$$

- Solve the above LP by hand for $n=2$. Use the largest coefficient rule to decide which variable enters the set of basic variables.
- Let $w_{1}, w_{2}, \ldots, w_{n}$ be the slack variables (where w_{i} corresponds to the constraint indexed by i above) - note that we have been using x_{n+1}, \ldots, x_{n+m} to denote the slack variables, but here we will use this alternate notation. Show that in any dictionary, exactly one of $\left\{w_{i}, x_{i}\right\}$ will be basic variable for all $i=1,2, \ldots, n$.
- Consider the dictionary

$$
\begin{aligned}
z & =-\sum_{j=1}^{n} \epsilon_{j} 10^{n-j}\left(\frac{1}{2} b_{j}-x_{j}\right) \\
w_{i} & =\sum_{j=1}^{i-1} \epsilon_{j} \epsilon_{i} 10^{i-j}\left(b_{j}-2 x_{j}\right)+\left(b_{i}-x_{i}\right) \quad \text { for } i=1,2, \ldots, n,
\end{aligned}
$$

where each ϵ_{i} is either 1 or -1 . Fix k and consider the pivot in which x_{k} enters the basis and w_{k} leaves the basis. Show that the resulting dictionary is of the same form as before. How are the new ϵ_{i} s related to the old ϵ_{i} s?

- Use the above result to show that the simplex method requires 2^{n-1} pivot steps in the above linear program if we follow the largest coefficient rule.

