
Chapter 14

Streaming Data Model

14.1 Finding frequent elements in stream

A very useful statistics for many applications is to keep track of elements that occur
more frequently. It can come in many flavours

• Mode : The element (or elements) with the highest frequency.

• Majority: An element with more than 50% occurrence - note that there may
not be any.

• Threshold: Find out all elements that occur more than f fraction of the stream
for any 0 < f ≤ 1. Finding majority is a special case with f > 1/2.

The above problems are hardly interesting from an algorithmic design perspective
and can be reduced to sorting. Designing more efficient algorithms requires more
thought (for example, finding mode). Accomplishing the same task in a streaming
environment with limited memory presents interesting design challenges. Let us first
review a well known algorithm forMajority finding among n elements known as Boyer-
Moore Voting algorithm. Note that the above procedure scans the array sequentially
and uses one counter variable. It is not obvious why it returns the majority element if
it exists. If there is no majority element, this can be verified by making one additional
pass to if the count of the element a[maj − ind] exceeds n/2.

The algorithm tries to prune elements without affecting the majority, if one exists.
At any point in the algorithm, the elements under consideration is the set of elements
yet to be scanned plus the multiset of the elements accounted under the variable
count. A key observation is, if there is a majority, it will remains a majority if some
other element is deleted along with an instance of the majority element. Indeed if
n1 > n/2 then n1 − 1 > (n− 2)/2. So, among a pair of elements, we can delete both

151

Procedure Finding Majority of n elements in Array a

1 maj ind← 0 ;
count← 0 ;

2 for i = 1 to n do

3 if count = 0 then
maj ind← i (* initalize maj ind *)

4 if a[maj ind] = a[i] then
5 count← count+ 1

else

6 count← count− 1 ;

7 Return a[maj ind] ;

Figure 14.1: Boyer-Moore Majority Voting Algorithm

as long as both are not majority. If both values are equal (and could be a candidate
for majority), we simply increment the count so that we can pair them with distinct
elements in future.

Alternately, we can argue that the count of any element can decrease by at most
n/2 if there is a majority element. In the end, the element returned is only a candidate
for majority and this needs to be verified using a second pass.

This idea can be generalized to finding out elements whose frequency is at least
n
k
for any integer k. Instead of one counter, we shall use k − 1 counters. When we

scan the next element, we can either increment the count, if there exists a counter
for the element or start a new counter if number of counters used is less than k − 1.
Otherwise, we decrease the counts of all the existing counters. If any counter becomes
zero, we discard that element and instead assign a counter for the new element. In the
end the counters return the elements that have non-zero counts. These are potentially
the elements that have frequencies at least n

k
and need a second pass to verify them.

The proof of correctness is along the same lines as the majority. Note that there
can be at most k − 1 elements that have frequencies exceeding n

k
, i.e., a fraction 1

k
.

So, if we remove such an element along with k− 1 distinct elements, it still continues
to be at least 1

k
fraction of the remaining elements - n1 > n

k
⇒ n1 − 1 > n−k

k
. We

can actually perform approximate counting using the Mishra-Gries algorithm (Figure
Algorithm for threshold).

Exercise 14.1 Let fi be the frequency of element i in the stream. Then show that

for a stram of length n, one can compute f̂i such that

fi −
n

k
≤ f̂i ≤ fi

152

Procedure Algorithm for threshold

1 cur : current element of stream ;
S: current set of elements with non-zero counts, |S| ≤ k ;

2 if cur ∈ S then

3 increment counter for cur
else

if |S| < k then

4 Start a new counter for cur, update S
else

5 decrement all counters ;
6 If a counter becomes 0 delete it from S

7 Return a[maj ind] ;

Figure 14.2: Mishra-Gries streaming algorithm for frequent elements

The previous algorithms have the property that the data is scanned in the order
it is presented and the amount of space is proportional to the number of counters
where each counter has log n bits.

14.2 Distinct elements in a stream

The challenging aspect of this problem is to count the number of distinct elements d
with limited memory m where m≪ d. Otherwise, we could simply hash the elements
and the count the number of non-zero buckets. Uniformly sampling a subset could
be misleading as multiple occurrence of any element would be picked up by the the
uniform sample and it doesn’t provide any significant information about the number
of distinct elements.

Instead we will hash the incoming elements uniformly over a range, [1, n] such
that if there are k distinct elements then they will be roughly n/k apart. If g is
the gap between two consecutive hashed elements, then we can estimate k = n/g.
Alternately, we can use the position of the first hashed position as as estimate of g.
This is the underlying idea behind the algorithm given in Figure 14.3.

This procedure will be analyzed rigorously using the property of universal hash
family family discussed earlier. The parameter of interest will be the expected gap
between consecutive hashed elements.

If k elements are uniformly mapped into the range [1, n]. we can compute the
expected position of the first hashed location as a function of k and then estimate
d. The algorithm keeps track of the smallest hashed location. At the end of the

153

Procedure Finding the number of distinct elements in a stream S(m,n)

1 Input A stream S = {x1, x2 . . . xm} where xi ∈ [1, n] ;
2 Suppose p is a prime in the range [n, 2n]. Choose 1 ≤ a ≤ p− 1 and
0 ≤ b ≤ p− 1 uniformly at random ;

3 Z ←∞ ;
4 for i = 1 to m do

5 Y = (a · xi + b) mod p ;
6 if Y < Z then

Z ← Y

7 Return ⌈ p
Z
⌉ ;

Figure 14.3: Counting number of distinct elements

stream this is the value g. Suppose we can show that g ∈ [g1(n, k), g2(n, k)] with high
probability. Then we can invert this to claim that k ∈ [k1, k2].

Let Zi = (a · xi + b) mod p be the sequence of hashed values from the stream.
Then we can claim the following.

Claim 14.1 The numbers Zi , 0 ≤ Zi ≤ p − 1 are uniformly random in the range

[0, p− 1] and are also pairwaise independent , viz., for r 6= s

Pr[Zi = r, Zk = s] = Pr[Zi = r] · Pr[Zk = s] =
1

p(p− 1)

Proof: For some fixed i0 ∈ [0, p − 1] and x ∈ [1, n], we want to find the probability
that x is mapped to i0. So

i0 ≡ (ax+ b) mod p

i0 − b ≡ ax mod p

x−1(i0 − b) ≡ a mod p

where x−1 is the multiplicative inverse of x in the multiplicative prime field modulo p
and it is unique since p is prime1. For any fixed b, there is a unique solution for a. As
a is chosen uniformly at random, the probability of this happening is 1

p
for any fixed

choice of b. Therefore this is also the unconditional probability that x is mapped to
i0.

For the second part consider i0 6= i1. We can consider x 6= y such that x, y are
mapped respectively to i0 and i1. We can write the simultaneous equations similar

1By our choice of p, x 6≡ 0 mod p

154

to the previous one.
[

x 1
y 1

]

·
[

a
b

]

≡p

[

i0
i1

]

The 2 × 2 matrix is invertible for x 6= y and therefore there is a unique solution
corresponding to a fixed choice of (i0, i1). The probability that a, b matches the
solution is 1

p(p−1)
as they are chosen uniformly at random over all the

(

p
2

)

pairs. 2

Let N be the number of distinct elements in the stream. Then we can claim the
following

Claim 14.2 For any constant c ≥ 2,

Z ∈
[p

cN
,
cp

N

]

with probability ≥ 1− 2

c

Proof: Note that if Z = p/N , then the algorithm returns N which is the number
of distinct elements in the stream. Since Z is a random variable, we will only be
able to bound the probability that it is within the interval

[

p
cN

, cp
N

]

with significant
probability implying that the algorithm with return an answer in the range [p/c, pc]
with significant probability. Of course, there is a risk that it falls outside this window
and that is the inherent nature of a Monte Carlo randomized algorithm.

First we will find the probability that Z ≤ s − 1 for some arbitrary s. Let us
define a family of indicator random variables in the following manner

Xi =

{

1 if (axi + b) mod p ≤ s− 1
0 otherwise

So the total number of xi that map to numbers in the range [1, s− 1] equals
∑N

i=1 Xi

since there are only N distinct xi’s and wlog, we are assuming that the first N are
distinct (alternately we can choose N indices corresponding to N distinct xi’s). Let
X =

∑

i Xi and we therefore have

E[X] = E[
∑

i

Xi] =
∑

i

E[Xi] =
∑

i

Pr[Xi = 1] = N · Pr[Xi = 1] =
sN

p

The last equality follows from the previous result as there are s = {0, 1 . . . s − 1}
possibilities for xi to be mapped and each has probability 1

p
.

If we choose s = p
cN

for some constant c, then E[X] = 1/c. From Markov’s
inequality, Pr[X ≥ 1] ≤ 1

c
, implying that with probability greater than 1− 1/c no xi

will be mapped to numbers in the range [0, ⌈ p
cN
⌉].

For the other direction, we will will Chebychev inequality, which requires comput-
ing the variance of X, which we shall denote by σ2(X). We know that

σ2[X] = E[(X − E[X])2] = E[X2]− E
2[X]

155

Since X =
∑

i Xi, we can calculate

E[X2] = E[(
∑

i

Xi)
2
]

= E[
∑

X2
i +

∑

i 6=j

Xi ·Xj]

= E[
∑

X2
i] + E[

∑

i 6=j

Xi ·Xj]

=
∑

E[X2
i] +

∑

i 6=j

E[Xi] · E[Xj]

which follows from linearity of expectation and pairwise independence of Xi and Xj
2.

So the expression simplifies to N · s
p
+N(N − 1) · s2

p2
. This yields the expression for

σ2(X) =
sN

p
+

N(N − 1)s2

p2
− s2N2

p2
=

sN

p
· (1− s

p
≤ sN

p

For s = cp
N
, the variance is bounded by c. From Chebychev’s inequality, we know

that for any random variable X,

Pr[|X − E[X]| ≥ t] ≤ σ2(X)

t2

Using t = E[X] = sN
p

= c, we obtain Pr[|X − E[X]| ≥ E[X]] ≤ c
c2

= 1
c
. The event

|X − E[X]| ≥ E[X] is the union of two disjoint events, namely

(i) X ≥ 2E[X] and
(ii) E[X]−X ≥ E[X], or X ≤ 0

Clearly, both events must have probability bounded by 1
c
and specifically, the second

event implies that the probability that none of the N elements is mapped to the
interval [0, cp

N
] is less than 1

c
. Using the union bound yields the required result. 2

So the algorithm outputs a number that is within the range [N
c
, cN] with proba-

bility ≥ 1− 2
c
.

2This needs to be rigorously proved from the previous result on pairwise independence of (xi, xj)
being mapped to (i0, i1). We have to technically consider all pairs in the range (1, s− 1).

156

14.3 Frequency moment problem and applications

Suppose the set of elements in a stream S = {x1, . . . , xm} belong to a universe
U = {e1, . . . , en}. Define the frequency fi of element ei as the number of occurrences
of ei in the stream S. The kth frequency moment of the stream is defined as

Fk =
n

∑

i=1

fk
i .

Note that F0 is exactly the number of distinct elements in the stream. F1 counts the
number of elements in the stream, and can be easily estimated by keeping a counter
of size O(logm). The second frequency moment F2 captures the non-uniformity in
the data – if all n elements occur with equal frequency, i.e., m/n (assume that m is
a multiple of n for the sake of this example), then F2 is equal to m2/n; whereas if
the stream contains just one element (with frequency m), then F2 is m

2. Thus, larger
values of F2 indicate non-uniformity in the stream. Higher frequency moments give
similar statistics about the stream – as we increase k, we are putting more emphasis
on higher frequency elements.

The idea behind estimating Fk is quite simple : suppose we sample an element
uniformly at random from the stream, call itX. SupposeX happens to be the element
ei. Conditioned on this fact, X is equally likely to be any of the fi occurrences of ei.
Now, we observe how many times ei occurs in the stream for now onwards. Say it
occurs r times. What can we say about the expected value of rk ? Since ei occurs fi
times in the stream, the random variable r is equally likely to be one of {1, . . . , fi}.
Therefore,

E[rk] =
1

fi

i
∑

j=1

jk.

Looking at the above expression, we see that E[rk − (r − 1)k] = 1
fi
· fk

i . Now, we
remove the conditioning on X, we see that

E[rk − (r − 1)k] = E[rk − (r − 1)k|X = ei] Pr[X = ei] =
1

fi
· fk

i ·
fi
m

=
1

m
· Fk.

Therefore, the random variable m(rk − (r − 1)k) has expected value as Fk.
The only catch is that we do not know how to sample a uniformly random element

of the stream. Since X is a random element of the stream, we want

Pr[X = xj] =
1

m
,

for all values of j = 1, . . . ,m. However, we do not know m in advance, and so cannot
use this expression directly. Fortunately, there is a more clever sampling procedure,

157

called reservoir sampling, described in Figure Combining reservoir sampling with the
estimator for Fk. Note that at iteration i, the algorithm just tosses a coin with
probability of Heads equal to 1/i.

Exercise 14.2 Prove by induction on i that after i steps, the random variable X is

a uniformly chosen element from the stream {x1, . . . , xi}.

We now need to show that this algorithm gives a good approximation to Fk with
high probability. So far, we have only shown that there is a random variable, namely
Y := m(rk − (r − 1)k), which is equal to Fk in expectation. But now, we want to
compute the probability that Y lies within (1 ± ε)Fk. In order to do this, we need
to estimate the variance of Y . If the variance is not too high, we can hope to use
Chebychev’s bound. We know that the variance of Y is at most E[Y 2]. Therefore,
it is enough to estimate the latter quantity. Since we are going to use Chebychev’s
inequality, we would like to bound E[Y 2] in terms of E[Y 2], which is same as F 2

k . The
first few steps for estimating E[Y]2 are identical to those for estimating E[Y] :

E[Y 2] =
n

∑

i=1

E[Y 2|X = ei] · Pr[X = ei] =
n

∑

i=1

m2 · E[(rk − (r − 1)k)2|X = ei] ·
fi
m

=
n

∑

i=1

mfi ·
1

fi

fi
∑

j=1

(jk − (j − 1)k)2 = m ·
n

∑

i=1

fi
∑

j=1

(jk − (j − 1)k)2. (14.3.1)

We now show how to handle the expression
∑fi

j=1(j
k − (j − 1)k)2. We first claim

that
jk − (j − 1)k ≤ k · jk−1.

This follows from applying the mean value theorem to the function f(x) = xk. Given
two points x1 < x2, the mean value theorem states that there exists a number θ ∈
[x1, x2] such that f ′(θ) = f(x2)−f(x1)

x2−x1

. We now substitute j − 1 and j for x1 and x2

respectively, and observe that f ′(θ) = kθk−1 ≤ kxk−1
2 to get

jk − (j − 1)k ≤ k · jk−1.

Therefore,

fi
∑

j=1

(jk−(j−1)k)2 ≤
fi
∑

j=1

k ·jk−1 ·(jk−(j−1)k) ≤ k ·fk−1
i

fi
∑

j=1

(jk−(j−1)k) = k ·fk−1
⋆ ·fk

i ,

where f⋆ denotes maxni=1 fi. Substituting this in (14.3.1), we get

E[Y 2] ≤ k ·m · fk−1
⋆ Fk.

158

Recall that we wanted to bound E[Y 2] in terms of F 2
k . So we need to bound m · fk−1

⋆

in terms of Fk. Clearly,

fk−1
⋆ = (fk

⋆)
k−1

k ≤ F
k−1

k

k .

In order to bound m, we apply Jensen’s inequality to the convex function xk to get

(∑n
i=1 fi
n

)k

≤
∑n

i=1 f
k
i

n
,

which implies that

m =
n

∑

i=1

fi ≤ n1−1/k · F 1/k
k .

Combining all of the above inequalities, we see that

E[Y 2] ≤ k · n1−1/k · F 2
k .

If we now use Chebychev’s bound, we get

Pr[|Y − Fk| ≥ εFk] ≤
E[Y 2]

ε2F 2
k

≤ k/ε2 · n1−1/k.

The expression on the right hand side is (likely to be) larger than 1, and so this does
not give us much information. The next idea is to further reduce the variance of Y
by keeping several independent copies of it, and computing the average of all these
copies. More formally, we maintain t i.i.d. random varaibles Y1, . . . , Yt, each of which
has the same distribution as that of Y . If we now define Z as the average of these
random variables, linearity of expectation implies that E[Z] remains Fk. However,
the variance of Z now decreases by a factor t.

Exercise 14.3 Show that the variance of Z, denoted by σ2(Z), is equal to 1
t
·σ2(Y) ≤

E[Y 2]/t.

Therefore, if we now use Z to estimate Fk, we get

Pr[|Z − Fk| ≥ εFk] ≤
k

t · ε2 · n
1−1/k.

If we want to output an estimate within (1± ε)Fk with probability at least 1− δ, we
should pick t to be 1

δε2
· n1−1/k. It is easy to check that the space needed to update

one copy of Y is O(logm+log n). Thus, the total space requirement of our algorithm
is O

(

1
δε2
· n1−1/k · (logm+ log n)

)

.

159

Procedure Reservoir Sampling

1 X ← x1 ;
2 for i = 2 to m do

3 Sample a binary random variable ti, which is 1 with probability 1/i ;
4 if ti = 1 then

5 X ← xi

6 Return X

Procedure Combining reservoir sampling with the estimator for Fk

1 X ← x1, r ← 1 ;
2 for i = 2 to m do

3 Sample a binary random variable ti, which is 1 with probability 1/i ;
4 if ti = 1 then

5 X ← xi, r ← 1

6 else

7 if X = xi then

r ← r + 1 ;

8 Return m
(

rk − (r − 1)k
)

;

Figure 14.4: Estimating Fk

160

14.3.1 The median of means trick

We now show that it is possible to obtain the same guarantees about Z, but we need
to keep only O

(

1
ε2
· log

(

1
δ

)

· n1−1/k
)

copies of the estimator for Fk. Note that we have

replaced the factor 1/δ by log (1/δ) . The idea is that if we use only t = 4
ε2
· n1−1/k

copies of the variable Y in the analysis above, then we will get

Pr[|Z − Fk| ≥ εFk] ≤ 1/4.

Although this is not good enough for us, what if we keep several copies of Z (where
each of these is average of several copies of Y) ? In fact, if we keep log(1/δ) copies of
Z, then at least one of these will give the desired accuracy with probability at least δ
– indeed, the probability that all of them are at least εFk far from Fk will be at most
(1/2)log(1/δ) ≤ δ. But we will not know which one of these copies is correct! Therefore,
the plan is to keep slightly more copies of Z, say about 4 log(1/δ). Using Chernoff
bounds, we can show that with probability at least 1− δ, roughly a majority of these
copies will give an estimate in the range (1± ε)Fk. Therefore, the median of all these
copies will give the desired answer. This is called the “median of means” trick.

We now give details of the above idea. We keep an array of variables Yij, where
i varies from 1 to ℓ := 4 log(1/δ) and j varies from 0 to t := 2

ε2
· n1−1/k. Each row of

this array (i.e., elements Yij, where we fix i and vary j) will correspond to one copy
of the estimate described above. So, we define Zi =

∑t
j=1 Yij/t. Finally, we define Z

as the median of Zi, for i = 1, . . . , ℓ. We now show that Z lies in the range (1± ε)Fk

with probability at least 1− δ. Let Ei denote the event: |Zi−Fk| ≥ εFk. We already
know that Pr[Ei] ≤ 1/4. Now, we want to show that the number of such events will
be close to ℓ/4. We can use Chernoff bound to prove this because these events are
independent.

Exercise 14.4 Prove that with probability at least 1 − δ, the size of the set {i :
Ei occurs} is at most ℓ/2.

Now assume the above happens. If we look at the sequence Zi, i = 1, . . . , ℓ, at least
half of them will lie in the range (1± ε)Fk. The median of this sequence will also lie
in the range (1± ε)Fk for the following reason: if the median is (say) above (1+ ε)Fk,
then at least half of the events Ei will occur, which is a contradiction. Thus, we have
shown the following result:

Theorem 14.1 We can estimate the frequency moment Fk of a stream with (1± ε)
multiplicative error with probability at least 1−δ using O

(

1
ε2
· log

(

1
δ

)

· n1−1/k
)

·(logm+
log n) space.

161

14.3.2 The special case of second frequency moment

It turns out that we can estimate the second frequency moment F2 using logarithmic
space only (the above result shows that space requirement will be proportional to√
n). The idea is again to have a random variable whose expected value is F2, but

now we will be able to control the variance in a much better way. We will use the
idea of universal hash functions. We will require binary hash functions, i.e., they
will map the set U = {e1, . . . , en} to {−1,+1}. Recall that such a set of functions
H is said to be k-universal if for any set S of indices of size at most k, and values
a1, . . . , ak ∈ {−1,+1},

Pr
h∈H

[∧i∈Sxi = ai] =
1

2|S|
,

where h is a uniformly chosen hash function from H. Recall that we can construct
such a set H which has O(nk) functions, and a hash function h ∈ H can be stored
using O(k log n) space only. We will need a set of 4-universal hash functions. Thus,
we can store the hash function using O(log n) space only.

The algorithm for estimating F2 is shown in Figure Second Frequency Moment. It
maintains a running sum X – when the element xt arrives, it first computes the hash
value h(xt), and then adds h(xt) to X (so, we add either +1 or −1 to X). Finally, it
outputs X2. It is easy to check that expected value of X2 is indeed F2. First observe
that if fi denotes the frequency of element ei. then X =

∑n
i=1 fi · h(ei). Therefore,

using linearity of expectation,

E[X2] =
n

∑

i=1

n
∑

j=1

fifjE[h(ei)h(ej)].

The sum above splits into two parts: if i = j, then h(ei)h(ej) = h(ei)
2 = 1; and if

i 6= j, then the fact that H is 4-universal implies that h(ei) and h(ej) are pair-wise
independent random variables. Therefore, E[h(ei)h(ej)] = E[h(ei)] · E[h(ej)] = 0,
because h(ei) is ±1 with equal probability. So

E[X2] =
n

∑

i=1

f 2
i = F2.

As before, we want to show that X2 comes close to F2 with high probability. We need
to bound the variance of X2, which is at most E[X4]. As above, we expand take the
fourth power of the expression of X:

E[X2] =
n

∑

i,j,k,l=1

fifjfkflE[h(ei)h(ej)h(ek)h(el)].

162

Procedure Second Frequency Moment

1 X ← 0, h← uniformly chosen ±1 hash function from a 4-universal family. ;
2 for i = 1 to m do

3 X ← X + h(xi)

4 Return X2

Figure 14.5: Estimating F2

Each of the summands is a product of 4 terms – h(ei), h(ej), h(ek), h(el). Con-
sider such a term. If an index is distinct from the remaining three indices, then
we see that its expected value is 0. For example, if i is different from j, k, l, then
E[h(ei)h(ej)h(ek)h(el)] = E[h(ei)]E[h(ej)h(ek)h(el)] (we are using 4-universal prop-
erty here – any set of 4 distinct hash values are mutually independent). But E[h(ei)] =
0, and so the expected value of the whole term is 0. Thus, there are only two cases
when the summand need not be 0: (i) all the four indices i, j, k, l are same – in this
case E[h(ei)h(ej)h(ek)h(el)] = E[h(ei)

4] = 1, because h(ei)
2 = 1, or (ii) exactly two

of i, j, k, l take one value and the other two indices take another value – for exam-
ple, i = j, k = l, but i 6= k. In this case, we again get E[h(ei)h(ej)h(ek)h(el)] =
E[h(ei)

2h(ek)
2 = 1. Thus, we can simplify

E[X4] =
n

∑

i=1

f 4
i +

n
∑

i=1

∑

j∈{1,...,n}\{i}

f 2
i f

2
j ≤ 2F 2

2 .

Thus we see that the variance of the estimator X2 is at most 2E[X2]2. Rest of the
idea is the same as in the previous section.

163

