
Notes on Matroid Intersection (COL 758)

Recall that a matroid M = (X, I) has two properties :

1. (containment property) If S ∈ I and T ⊆ S, then T ∈ I.

2. (exchange property) If S, T ∈ I and |S| < |T |, then there exists x ∈ T −S such that S +x ∈ I (S +x
is shorthand for S ∪ {x}).

There are several statements which look intuitive (when viewed in special cases of graphic matroid, but
one needs to prove them using these two properties only). For a subset U of X, define rank(U) as the size
of a maximal independent set in U . Note that this property is well defined – if S and T are two maximal
independent sets in U , then |S| = |T | (if, e.g., |S| < |T |, then the exchange property implies that we can
add an element of T − S to S and so, S will not be maximal). Some useful facts:

• Suppose U, V ⊆ X, and U ⊆ V . Then, for any x /∈ V ,

rank(V + x)− rank(V ) ≤ rank(U + x)− rank(U) (1)

Clearly rank(V − x)− rank(V ) is either 0 or 1 – if it is 0, then there is nothing to prove. So assume
it is 1. Let rank(V ) be t, and rank(U) be s. Let I be a maximal independent set (of size t + 1)
in V + x. I must contain x (otherwise it will be an independent set in V , but rank(V ) is t only).
Let J be a maximal independent set (of size s) in U . Warning: J may not be a subset of I. By the
exchange property, we can keep on adding elements of I − J to J till its size becomes t + 1 (and it
remains in I) – let this set of size t + 1 be J ′. J ′ must contain x (since it is an independent set and
cannot be a subset of V ). Now by the subset property J + x, which is a subset of J ′, must be in I
as well. Thus, rank(U + x) = s + 1. This property is also called submodularity of the rank function.

• Let U ⊆ X and x1, . . . , xk be elements in X − U . Suppose it is the case that adding any of these
elements to U does not increase the rank of U , i.e., rank(U +xi) = rank(U) for all i = 1, . . . , k. Then,
adding all of these elements to U will also not increase its rank, i.e., rank(U∪{x1, . . . , xk}) = rank(U).
Its enough to show this for k = 2 (the general case can be proved in a similar manner, or by induction
on k) :

rank(U + x1 + x2)− rank(U) = (rank(U + x1 + x2)− rank(U + x1))− (rank(U + x1)− rank(U)).

The second term is 0 by assumption. For the first term, if V = U + x1, then the above statement
implies that this is also 0.

This allows us to define span(U) as the set of all elements whose addition to U does not increase the
rank :

span(U) = {x ∈ X : rank(U + x) = rank(U)}.

Clearly, U ⊆ span(U), but in general it can be larger. It is motivated by the special case of linear
algebraic matroid. What we have shown is that even if we add all of span(U) to U simultaneously,
it does not increase the rank, i.e., rank(U) = rank(span(U)).

Exercise 1 Suppose U, V ⊆ X, U ⊆ V . Prove that span(U) ⊆ span(V ) (again, it is intuitive, but you
need to prove it formally).



Another intuitive (but more general) statement:

Exercise 2 Suppose U, V ⊆ X. Suppose U ⊆ span(V ). Then span(U) ⊆ span(V ).

A circuit is defined as a minimal dependent set (a set is dependent if it is not independent). From the
above exercise, the following follows.

Exercise 3 Suppose U is a circuit. Prove that for any z ∈ U , span(U) = span(U − z).

Now we come to matroid intersection. We are given two matroids M1 = (X, I1) and M2 = (X, I2)
over the same set of elements X. We would like to find a set I of largest size such that I ∈ I1 ∩ I2. Let
r1, r2 be the rank functions in M1 and M2 respectively. We will give an iterative algorithm which starts
with a set I and incrementally improves it till we can no longer improve its size. First we need an upper
bound on the size of an optimal set (i.e., largest set which is in I1 ∩ I2). In fact, the way we will prove
that our set I is optimal is by using this upper bound – we will show that our algorithm stops when |I|
reaches this upper bound. Let I be any set in I1 ∩ I2. Let U be any subset of X. We observe:

|I| = |I ∩ U |+ |I ∩ (X − U)| ≤ r1(U) + r2(X − U).

The second inequality follows because I ∩ U is an independent set in I1 (by the containment property),
and so, r1(U) ≥ |I ∩U |. Similarly, for the second term. Since this holds for any I, it follows that it is true
for an optimal I as well:

max
I∈I1∩I2

|I| ≤ r1(U) + r2(X − U).

Thus, every U gives an upper bound on the size of an optimal solution. Note that we are free to pick any
U – if we want to get the best possible upper bound we should pick a U for which the bound is as small
as possible. So,

max
I∈I1∩I2

|I| ≤ min
U :U⊆X

(r1(U) + r2(X − U)).

The matroid intersection theorem states that we have equality above.

Theorem 1 Matroid Intersection Theorem. For any two matroids M1 = (X, I1),M2 = (X, I2) with
rank functions r1 and r2 respectively,

max
I∈I1∩I2

|I| = min
U :U⊆X

(r1(U) + r2(X − U)).

Our algorithm will prove this theorem as well. We will exhibit an I ∈ ∩I1 ∩ I2 and a set U such that

|I| = r1(I ∩ U) + r2(I ∩ (X − U)).

It will follow that I must be an optimal solution (indeed, no set can be bigger than the term on RHS).
Further this will prove the matroid intersection theorem.

Exercise 4 We are given a connected undirected graph G = (V,E), and a set C of colours. Each edge in
E is assigned a colour from C. We would like to know if it is possible to find a spanning tree where no two
edges have the same colour. Using the matroid intersection theorem, prove that this is possible if and only
if the following condition holds for any subset C ′ ⊂ C: let n(C ′) be the number of connected components in
G when we remove all the edges which have colour from the set C ′. Then, n(C ′) must be at most |C ′|+ 1.



Now we describe the algorithm. We assume that we have a set I ∈ I1 ∩ I2 (initially, this could be the
empty set). One iteration of our algorithm will try to find another set in I1 ∩ I2 of size |I| + 1. To do
this, we first construct a bipartite graph H which captures the notion of how we can locally modify I to
get another independent set in I1 (or I2). The graph H will have elements of I on one side (say, left side)
and elements of X − I on the right side. There are two kinds of edges E1 and E2: E1 will correspond to
matroid M1 and E2 to matroid M2. The edges of E1 will be directed from left to right, and of E2 will go
in the other direction (from right to left). We will use the letter y to denote vertices on the left (i.e., in I)
and x for those on the right.

E1 = {(y, x) : I − y + x ∈ I1}, E2 = {(x, y) : I − y + x ∈ I2}.

Let X1 be the elements on the right side (i.e., in X−U) which can be added to I such that the set remains
in I1, and define X2 analogously. What if X1 is empty? In this case, I must be a maximal independent
set in I1, and so, there cannot be a solution of larger size. Thus, I is optimal (the matroid intersection
theorem also follows by taking U to be X). So, assume X1 (and similarly, X2) is not empty. Further,
if x ∈ X1 ∩ X2, then adding I + x ∈ I1 ∩ I2. Thus, we have obtained a solution of larger size, and our
algorithm can not start another iteration. Therefore, assume that X1 ∩X2 = ∅.

Let P be a directed path from a vertex in X1 to a vertex in X2 in H – in fact among all such paths, we
will pick the shortest (in number of edges) such path. It is not clear why we need a shortest path, but we will
see its importance later in the analysis. The path P starts with an edge in E2 (because edges of E2 go from
right to left, and of E1 go in the other direction), alternated between edges of E2 and E1, and ends with an
edge of E1. So, if we use e1, e2, . . . , e2k to denote the edges in the path P , then e1, e3, . . . belong to E2 and
e2, e4, . . . belong to E1. Let the vertices in the path be x0, y1, x1, y2, x2, . . . , yk, xk, where x0, x1, . . . , xk lie on
the right side, and y1, y2, . . . , yk lie on the left side (i.e., in I). So, e1 = (x0, y1), e2 = (y1, x1), e3 = (x1, y2),
and so on. We would like to remove the elements y1, . . . , yk from I and add x0, . . . , xk to I, i.e., define
I ′ = (I − {y1, . . . , yk}) ∪ {x0, . . . , xk}. First of all, |I ′| = |I| + 1, and so, if indeed I ′ happens to be in
I1 ∩ I2, we will be done with this iteration of our algorithm.

Why should such a set I ′ be in I1 ∩ I2? This makes sense locally. If we want to add, say, x1 to I, then
we know that I + x1 − y2 ∈ I2 and I + x1 − y1 ∈ I1 (because (x1, y2) ∈ E2, (y1, x1) ∈ E1), and so, locally
we will be fine if we remove y1 and y2. The non-triviality lies in showing that adding all of x0, . . . , xk and
removing all of y1, . . . , yk still leads to an independent set in I1 ∩ I2. In fact, this is far from obvious as
the following exercise shows:

Exercise 5 Give an example of a graphic matroid (X, I) where the following happens: there is an inde-
pendent set I ∈ I, elements y1, y2 ∈ I and x1, x2 /∈ I such that :

I + x1 − y1, I + x2 − y2 ∈ I, but I + {x1, x2} − {y1, y2} /∈ I.

This is where the fact that P is a shortest path from X1 to X2 comes to our rescue. We now show that
I ′ ∈ I1. A similar argument shows that it is in I2. First observe that I + xk − yk ∈ I1 (since (yk, xk) ∈ I1.
Continuing in the order k, k−1, k−2, . . ., we stop at the first i such that I+{xk, xk−1, . . . , xi}−{yk, . . . , yi} /∈
I1 (if such an i exists). Now we use the notion of span introduced at the beginning – it jus shortens
many of the arguments (do the exercises involving span if you have not done them). Let J denote the
set I + {xk, xk−1, . . . , xi} − {yk, . . . , yi+1}. Since J − xi ∈ I1 (because of the definition of i), and J /∈ I,
xi ∈ span(J−xi) (adding xi to J−xi does not increase the rank). Consider any element of J−xi. We argue
that it is contained in span(I−yi). Indeed, any yj 6= yi is in I−yi, and so in span(I−yi). Consider xj , j > i.
Observe that (yi, xj) /∈ E1, otherwise P will not be a shortest path! This means that I − yi + xj /∈ I1, i.e.,



xj ∈ span(I − yi). Thus, we see that J − xi ⊆ span(I − yi), and so, span(J − xi) ⊆ span(I − yi). But
xi ∈ span(J −xi), and so, xi ∈ span(I−yi). But this cannot be true, because I−yi +xi ∈ E1, i.e., adding
xi to I − yi increases its rank (it leads to an independent set in I1). Thus, we see that no such i can exist,
i.e., J := I + {x1, . . . , xk} − {y1, . . . , yk} ∈ I1. It remains to show that J + x0 ∈ I1 as well. This can be
used by a very similar argument as above.

Exercise 6 Show that J + x0 ∈ I1.

Exercise 7 Show that I ′ ∈ I2.

Thus, we have managed to get an independent set I ′ of larger size than I. The only situation when
this cannot happen is if there is no path from X1 to X2 in the graph H. In this case, we need to show
that I is already an optimal solution. Recall that our strategy would be to exhibit a set U for which
we can show that |I| = r1(U) + r2(X − U). We define U as the set of all elements in X which have
a directed path to a vertex in X2 in the graph H. Clearly, X2 ⊆ U,X1 ∩ U = ∅. We now show that
r1(U) = |I ∩ U |, r2(X − U) = |I ∩ (X − U)|, which implies that

|I| = |I ∩ U |+ |I ∩ (X − U)| = r1(U) + r2(X − U).

We show the first statement, the proof of the second one is similar.

Since I ∈ I1, we know that I ∩ U ∈ I1 as well (containment property). Can U contain an independent
set larger than I∩U ? If it does, then the exchange property shows that there is an element x ∈ U−(I∩U)
such that (I ∩ U) + x ∈ I1. Such an x will lie on the right side of H (clearly, x cannot be in I). Repeated
applications of the exchange property show that we can keep on adding elements of I− (I ∩U) to I ∩U +x
till we get an independent set of size |I|. Such an independent set will contain I ∩ U + x and all the
remaining elements will be from I − (I ∩ U). Thus it will look like I − x + y, where y ∈ I − (I ∩ U). But
then, (y, x) ∈ E1. In other words, there will be a path from y to a vertex in X2 (since there is such a path
starting from x). But y /∈ U ! Thus, we get a contradiction, and so, r1(U) = |I ∩ U |.

Exercise 8 Show that r2(U) = |I ∩ (X − U)|.


