
Notes on Weighted Majority (COL 758)

1 The weighted majority algorithm

We describe the setting for the “on-line learning from experts” problem. We are given N experts, e1, . . . , en.

At each time t, the expert ei incurs loss y
(t)
i . We assume that the loss lies in the range [−1, 1]. At each

time t, the algorithm needs to pick one of the experts (without knowing the vector y(t)). The algorithm

maintains weights w
(t)
i of the experts. At time t, it picks an expert ei with probability proportional to its

weight w
(t)
i . After it picks an expert, it gets to know the loss vector y(t). It updates the weights of the

experts for the next time step, and so on. The online learning algorithm is described in Figure 1. Here,
η is a parameter between 0 and 1/2. Note that the algorithm decreases the weights of experts who incur
loss and increases the weights of experts who incur gain (or negative loss). Note that T denotes the time
horizon over which we run the algorithm.

Algorithm Learn From Experts:

Initialize w
(1)
i ← 1 for all experts ei.

For t = 1, 2, . . . , T

Pick expert ei with probability proportional to w
(t)
i .

Update w
(t+1)
i ← (1− ηy(t)

i ) · w(t)
i for all experts ei.

Figure 1: On-line algorithm for learning from experts.

Theorem 1 The total expected loss of the algorithm is at most

T∑
t=1

y
(t)
i + η ·

T∑
t=1

|y(t)
i |+

log n

η
,

where i is any index between 1 and n.

Note that the expression
∑T

t=1 y
(t)
i denotes the total loss of expert ei. Thus, the theorem says that the

expected loss of the algorithm is at most the loss incurred by the best expert plus a small additive term.
Proof: The idea behind the proof is to look at the potential function

Φ(t) =

n∑
i=1

w
(t)
i ,

which is the total weight of all the experts at time t. Whenever our algorithm incurs high loss, it must
be the case that most of the weight lies with experts who incur high loss at time t. Therefore, the total
weight of the experts should decrease by a good amount. We can formalize this reasoning as follows :

Φ(t+1) =
n∑
i=1

w
(t+1)
i =

n∑
i=1

w
(t)
i (1− ηy(t)

i ) = Φ(t) ·

(
1− η

n∑
i=1

y
(t)
i w

(t)
i

Φ(t)

)
.



Let l(t) denote the expected loss incurred by the algorithm at time t. Observe that l(t) is exactly∑n
i=1

y
(t)
i w

(t)
i

Φ(t) . Therefore, we have

Φ(t+1) = Φ(t) · (1− ηl(t)) ≤ Φ(t)e−ηl
(t)
.

Thus, we see that if l(t) is large, the potential drops by a large amount. The above inequality also shows
that

Φ(T+1) = Φ(1) ·
T∏
i=1

e−ηl
(t)

= n · e−η
∑T

t=1 l
(t)
. (1)

At the same time, we know that for any fixed expert i, Φ(T+1) ≥ w
(T+1)
i . If the algorithm incurs large

loss, the potential Φ(T+1) will be very small, which implies that the weight of ei is very small. Therefore,
ei must have incurred large loss as well. For the expert ei, let I+ denote the time time steps t for which

y
(t)
i ≥ 0, and T− be the remaining time steps (i.e., when y

(t)
i < 0). Observe that

w
(T+1)
i =

T∏
t=1

(1− ηy(t)
i ) =

∏
t∈I+

(1− ηy(t)
i ) ·

∏
t∈I−

(1− ηy(t)
i ) ≤ (1− η)l

+
i · (1 + η)−l

−
i ,

where l+i denotes
∑

i∈I+ y
(t)
i and l−i denotes

∑
i∈I− y

(t)
i , and we used the following easy to check facts:

(1− ηx) ≤ (1− η)x, (1 + ηx) ≤ (1 + η)x, for 0 < x < 1.

Since Φ(T+1) ≥ w(T+1)
i , combining this fact with (1), we get

T∑
t=1

l(t) ≤ log n

η
− log(1− η)

η
l+i +

log(1 + η)

η
l−i ≤

log n

η
+ (l+i + l−i ) + η(l+i − l

−
i ),

where we have used the following facts (which are true because 0 ≤ η ≤ 1/2) :

− log(1− η) ≤ η + η2, log(1 + η) ≤ η − η2.

Finally observe that l+i + l−i is exactly the total loss incurred by ei, i.e.,
∑T

t=1 y
(t)
i , and l+i − l

−
i is

∑T
t=1 |y

(t)
i |.

�

We get the following corollary.

Corollary 1 With a suitable choice of η, the total expected loss of the algorithm is at most

T∑
t=1

y
(t)
i +

√
T log n,

where i is any index between 1 and n.

Proof: We pick η =
√
T/ log n, and observe that

∑T
t=1 |y

(t)
i | ≤ T . �



2 Applications to Solving Linear Programs

We show how to use the above framework to solve a special class of linear program, called fractional set
cover. The framework is more powerful, and can be extended to more general LPs. Here we are given n
variables x1, . . . , xm, a cost vector (c1, . . . , cm), and subsets S1, . . . , Sn of U = {1, . . . ,m}. The LP can be
written as

min .
m∑
j=1

cjxj

s.t.∑
j∈Si

xj ≥ 1 ( constraint Ei)

xj ≥ 0 for all j

We will use Ei to denote the constraint for set Si, where Ei should be thought of as the ith expert.
Instead of solving a minimisation problem, we will solve a feasibility problem – given a number T , we will
find a solution x1, . . . , xn which satisfies the following conditions (assuming such a solution exists):

m∑
j=1

cjxj ≤ T

∑
j∈Si

xj ≥ 1 ( constraint Ei)

xj ≥ 0 for all j

We can solve the minimization problem by trying different values of T . The minimum possible value
of T is 0, and the maximum possible value is mcmax. Therefore, we can solve the optimization problem by
trying log(mcmax) different values of T . We focus on the feasibility problem now. Another way of stating
this problem is as follows : let P denote the set of vectors (x1, . . . , xn) satisfying the following constraints:

c1x1 + . . .+ cmxm ≤ T, x1, . . . , xm ≥ 0.

The feasibility problem asks us to find a vector in P which satisfies each of the constraints E1, . . . , En.
Note that if we had just one constraint, say E1, then the problem is easy – just pick the cheapest variable
in S1 to an extent of 1 unit. We will reduce the problem to learning from experts. Our algorithm will
run through several iterations. In each iteration, it will find a candidate solution (which may not satisfy
all the constraints), and finally output the average of all these solutions. The idea behind the candidate
solution in an iteration is to pick one expert (or constraint) and just solve the feasibility problem with
respect to this constraint only. Which expert should we pick? We would like this to be the constraint
which is getting violated a lot by the current solution, so that in the overall average, we more or less
satisfy all the constraints. For this plan to work, we should assign weights to constraints in such a manner
that the more violated constraints get higher weights – recall that the learning by experts algorithms has
higher probability of picking a higher weight expert. Therefore, given a solution x, the loss corresponding
to Ei is proportional to (

∑
j∈Si

xj − 1) – higher violation implies less (in fact, negative) loss. Since we are
required to keep the loss in the range [−1, 1], we will define the loss of Ei (corresponding to a solution x)

as
1−

∑
j∈Si

xj

m . One final comment: the learning from experts algorithm does not deterministically pick a



single expert, but maintains a distribution over the experts. It turns out that the corresponding choice here
would to pick a weighted combination of constraints (rather than a single constraint). Given the constraints
E1, . . . , En, and non-negative weights w1, . . . , wn, define w1E1 + . . .+wnEn to be the constraint obtained
by multiplying Ei by wi on both sides and then adding up all these constraints. Clearly, if there is a
solution x ∈ P which satisfies all the constraints, then there would be a solution x ∈ P which satisfies any
(positive) linear combination of these constraints. But the latter is a much simpler problem – any such
constraint will look like a1x1 + . . .+ anxn ≥ b, where a1, . . . , an, b ≥ 0. It is easy to see that the minimum
possible value of c1x1 + . . .+ cmxm subject to this constraint is ci · bai , where i denotes the index for which

the ratio ci/ai is minimum. Thus, we just need to check if ci · bai ≤ T – if so, then this is a feasible solution,
else there is no solution.

The algorithm is described in Figure 2. We now analyze this algorithm. We first compute the expected

Algorithm Solve LP:

1. Initialize w
(1)
i ← 1 for all constraints Ei.

2. For t = 1, 2, . . . , T

(i) Let x(t) be a solution in P which satisfies the constraint
∑n

i=1w
(t)
i Ei

If there is no such solution, STOP and declare that the LP is infeasible.

(ii) Update w
(t+1)
i ← (1− ηy(t)

i ) · w(t)
i for all experts Ei, where y

(t)
i =

∑
j∈Si

xj−1

m .

3. Output x̄← 1/T ·
∑T

t=1 x
(t).

Figure 2: On-line algorithm for solving LP.

loss of the algorithm at time t. As before, let Φ(t) denote
∑n

i=1w
(t)
i . Observe that the expected loss of the

algorithm at time t is is equal to

n∑
i=1

w
(t)
i y

(t)
i

Φ(t)
=

n∑
i=1

w
(t)
i (
∑

j∈Si
x

(t)
j − 1)

mΦ(t)
≥ 0,

where the last inequality follows from the fact that the numerator corresponds to the constraint w1E1 +
. . . + wnEn, and x(t) satisfies this constraint. Therefore, the total expected loss of the algorithm is non-
negative. Corollary 1 now shows that the total loss of any constraint Ei is at least −

√
T log n. But the

total loss of Ei can be expressed as

T∑
t=1

y
(t)
i =

T∑
t=1

1−
∑

j∈Si
xj

m
=
T

m
· (
∑
j∈Si

x̄j − 1).

Thus, we see that ∑
j∈Si

x̄j − 1 ≥ −m
√

log n

T
≥ −δ,

if we pick T to be m2/δ2 · log n. Rearranging terms, we see that x̄/(1− δ) satisfies all the constraints, and
the total cost of this solution is at most T/(1− δ). It follows that this algorithm will find a solution of cost
at most T ∗/(1− δ), where T ? is the minimum cost of any solution to the LP.

How much time did the algorithm take? Each of the iterations takes O(mn) time. Thus the total
running time for a fixed value of T is O(m3n/δ2 · log n). Finally, we will try log(mcmax) different values of
T . Therefore, the total running time is O(m3n/δ2 · log n · log(mcmax)).



Exercise 1 Suppose that we pick a constraint Ei with probability proportional to w
(t)
i in Step 2(i) of the

above algorithm (instead of picking a weighted linear combination of the experts). Will the analysis still
work ?

Exercise 2 Use Theorem 1 instead of Corollary 1 to show that it suffices to pick T = O(m/δ2 · log n) in
the analysis above.

Exercise 3 (taken from notes by Shuchi Chawla) Here is a variation on the deterministic Weighted-
Majority algorithm, designed to make it more adaptive.

(a) Each expert begins with weight 1 (as before).

(b) At every step, we predict the result of a weighted-majority vote of the experts (as before).

(c) At every step, for every expert that makes a mistake, we penalize it by dividing its weight by 2, but
only if its weight was at least 1/4 of the average weight of experts.

Prove that in any contiguous block of steps (e.g., the 51st step through the 77th step), the number of
mistakes made by the algorithm is at most O(m+ log n), where m is the number of mistakes made by the
best expert in that block, and n is the total number of experts.


