
1 Answer 1

1. If there are edge-disjoints paths to S, then there are also edge-disjoint paths to any subset
of S.

2. Suppose |T | > |S| and there are edge disjoint paths from s to all vertices in T , and similarly
for S. Create a flow instance as follows: add a new vertex t, and have edges between t
and every vertex in S ∪ T . Give capacity 1 to all edges. Since there are |T | disjoint paths
from s to t, max-flow from s to t has value at least |T |. Now let P be the set of edge
disjoint paths from s to vertices in S – sending 1 unit of flow on these paths (and on the
edges connecting S to t), we get a flow from s to t of value |S|. Let f be this flow, and
Gf be the residual graph. Since |T | > |S|, we know that we can send at least one more
unit of flow in Gf from s to t (recall the augmenting path algorithm – as long as we are
not at a max-flow, we can always find an augmenting path in the current residual graph).
So, we find a path in Gf from s to t and send 1 more unit of flow on it. This path does
not contain any of the edges (x, t), x ∈ S (because these edges are saturated), and so, in
the new flow, we still saturate all the edges connecting S to t. Thus, we get a flow from s
to t of value |S|+ 1. If we now think of this flow as a set of edge-disjoint paths from s to
t, we see that it has edges disjoint paths from s to every vertex in S and one more vertex
in T \ S.

2 Answer 2

Given a set of vectors S, let dim(S) denote the dimension of the subspace spanned by them.

2.1 Proof that (X, I) is a matroid

1. Let S ∈ I, T ⊂ S. Then, since X \ S ⊂ X \ T , dim(X \ T ) ≥ dim(X \ S) = dim(X) (as
dimension of a subset can only be less). Hence, T ∈ I.

2. Let S, T ∈ I, |T | > |S|. We need to show that we can add an element of T \ S to S and
keep it in I. Let B1 be a basis of X \ (S ∪ T ). Now, extend B1 to a basis B of X \ S. We
first show that B cannot contain all elements of T \ S – once we show this, we are done
because take any element t ∈ T \ S, and add it to S. Since B does not have a common
element with S + t, S + t ∈ I as well.

Suppose for the sake of contradiction, T \S is a subset of B. Then, |B| ≥ |B1|+ |T \S| >
|B1|+ |S \ T | (the last inequality follows because |T | > |S| and so, |T \ S| > |S \ T |. But
we can extend B1 to a basis of X \T and the size of this basis will be |B|. What elements
can we add to B1 during this process ? These will have to be elements in S \T . But then,
|B| ≤ |B1|+ |S \ T |, which is a contradiction.

2.2 Algorithm for two disjoint bases

Let L(X) be the linear matroid on X, i.e., the matroid whose independent sets are linearly
independent sets of vectors in X, and I be the independent sets of the matroid mentioned
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above. Then, compute a maximum size subset S in L(X) ∩ I (using martroid intersection). If
|S| = dim(X), then output S and a basis of X \ S – both will have size dim(X). Otherwise
output that no two disjoint bases exist.

3 Answer 3

We work with two matroids – for the first matroid, we consider the matrix A[I, C] – the sub-
matrix of A obtained by considering rows in I only. The matroid M1 is the linear matroid
on the columns of this submatrix, i.e., the set of elements are the columns of this matrix, and
the independent sets are the sets of columns which are linearly independent. For the second
matroid, we consider the matrix A[R \ I, C]. The matroid M2 has as elements the columns of
the matrix A[R \ I, C], and a subset S of columns in this matrix is independent in this matroid
iff its deleting them does not change the rank of this matrix – by the previous question, this
is a matroid. We will show that there is an independent set of size at least |I| in both the
matroid. This is enough for our purposes because if J is the set of columns corresponding to
this independent set, then we are saying that J is independent in the first matroid, i.e., the
square matrix A[I, J ] is full rank. Similarly, A[R \ I, C \ J ] has full rank.

To prove this statement, we use the matroid intersection theorem. It is enough to show that
for every subset U of columns, r1(U) + r2(C \ U) ≥ |I|.

Theorem 3.1 rank(A[I, U ]) + rank(A[R \ I, U ]) ≥ |U |.

Proof Let S be the subspace spanned by vectors obtained by extending the columns of A[I, U ]
to length |R| by keeping the coordinates at indices corresponding to I same and putting zeros at
the other entries. Let T be the subspace spanned by vectors obtained by extending the columns
of A(R−I, U) in a similar way. Then, dim(S) = rank(A[I, U ]) and dim(T ) = rank(A[R\I, U ]).
Observe that S ∪T spans U . Hence, dim(U) ≤ dim(S ∪T ) = dim(S) +dim(T )−dim(S ∩T ) =
rank(A[I, U ])+rank(A[R−I, U ])−0, which finishes the proof. (dim(S∩T ) = 0 because vectors
of S are zero at coordinates indexed by R− I and vectors of T are zero at coordinates indexed
by I, hence the only common vector is zero vector) QED

Let B1 be a basis of the columns of A[R \ I, U ]. Then, |B1| ≥ |U | − r1(U) by the above
theorem. Extend B1 to a basis B of A[R \ I, C], where |B| = |C| − |I|. Let B2 denote B \ B1.
Note that B2 is a subset of C \ U . Let S be the columns of C \ U which are not in B2. Note
that rank(A[R \ I, C \ S]) = |R| − |I|, because the set of columns in this sub matrix includes
B. Therefore, r2(C \ U) ≥ |S| ≥ |I| − r1(U).
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