TUTORIAL SHEET 8

1. Let n be a positive integer and let $n-1=2^{s} t$, where s is a non-negative integer and t is an odd positive integer. We say that n passes Miller's test for the base b if either $b^{t} \equiv 1(\bmod n)$ or $b^{2^{j} t} \equiv-1(\bmod n)$ for some j with $0 \leq j \leq s-1$. It can be shown that a composite integer n passes Miller's test for fewer than $n / 4$ bases b with $1<b<n$. A composite positive integer n that passes Miller's test to the base b is called a strong pseudoprime to the base b.

- Show that if n is prime, and b is a positive integer not a multiple of n, then n passes the Miller's test to the base b.
- Show that 2047 is a strong pseudoprime to the base 2 by showing that it passes Miller's test to the base 2, but it is composite.

2. We say that n is a Carmichael number if n is composite and $a^{n-1} \equiv 1(\bmod n)$ for all $2 \leq a \leq n-1, \operatorname{gcd}(a, n)=1$.

- Show that 1729 is a Carmichael number.
- Show that 2821 is Carmichael number.
- Show that if $n=p_{1} p_{2} \ldots p_{k}$, are distinct primes that satisfy $p_{j}-1 \mid n-1$ for $j=1, \ldots, k$, then n is a Carmichael number.

3. If m is a positive integer, the integer a is a quadratic residue of m if $\operatorname{gcd}(a, m)=1$ and the congruence $x^{2} \equiv a(\bmod m)$ has a solution. In other words, a quadratic residue of m is an integer relatively prime to m that is a perfect square modulo m. If a is not a quadratic residue of m and $\operatorname{gcd}(a, m)=1$, we say that a is a quadratic non-residue of m. For example, 2 is quadratic residue of 7 because $\operatorname{gcd}(2,7)=1$ and $3^{2} \equiv 2(\bmod 7)$, and 3 is a quadratic non-residue of 7 because $\operatorname{gcd}(3,7)=1$ and $x^{2} \equiv 3(\bmod 7)$ has no solution.

- Which integers are quadratic residues of 11 ?
- Show that if p is an odd prime and a is an integer not divisible by p, then the congruence $x^{2} \equiv a(\bmod p)$ has either no solutions, or exactly two incongruent solutions modulo p.
- Show that if p is an odd prime, then there are exactly $(p-1) / 2$ quadratic residues of p among the integers $1,2, \ldots, p-1$.

4. If p is an odd prime and a is an integer not divisible by p, the Legendre symbol $\left(\frac{a}{p}\right)$ is defined to be 1 if a is a quadratic residue of of $p,-1$ otherwise.

- Show that if p is an odd prime and a and b are integers with $a \equiv b(\bmod p)$, then $\left(\frac{a}{p}\right)=\left(\frac{b}{p}\right)$.
- Prove Euler's criterion that if p is an odd prime and a is a positive integer not divisible by p, then $\left(\frac{a}{p}\right) \equiv a^{(p-1) / 2}(\bmod p)$.
- Use the above to show that if p is an odd prime, and a and b are integers not divisible by p, then $\left(\frac{a b}{p}\right)=\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)$.

5. Show that if p is an odd prime, then -1 is quadratic residue of p if $p \equiv 1(\bmod 4)$, and -1 is not a quadratic residue of p if $p \equiv 3(\bmod 4)$.
6. Find all solutions to the congruence $x^{2} \equiv 29(\bmod 35)$ [Hint: Find solutions modulo 5 and 7 , and then use Chinese remainder theorem].
