TUTORIAL SHEET 6

1. Show that if a and b are positive integers, then $\left(2^{a}-1\right) \bmod \left(2^{b}-1\right)=2^{a \bmod b}-1$.
2. Use the above to show that if a and b are positive integers, then $\operatorname{gcd}\left(2^{a}-1,2^{b}-1\right)=$ $2^{\operatorname{gcd}(a, b)}-1$. [Hint: Show that the remainders obtained when the Euclidean algorithm is used to compute $\operatorname{gcd}\left(2^{a}-1,2^{b}-1\right)$ are of the form $2^{r}-1$, where r is a remainder arising when the Euclidean algorithm is used to find $\operatorname{gcd}(a, b)$.
3. Prove or disprove: $p_{1} p_{2} \ldots p_{n}+1$ is prime for every positive integer n, where p_{1}, \ldots, p_{n} are the n smallest prime numbers.
4. Prove the correctness of the following rule to check if a number N is divisible by 7 : Partition N into 3 digit numbers from the right $\left(d_{3} d_{2} d_{1}, d_{6} d_{5} d_{4}, \ldots\right)$. The alternating sum $\left(d_{3} d_{2} d_{1}-d_{6} d_{5} d_{4}+d_{9} d_{8} d_{7}-\ldots\right)$ is divisible by 7 if and only if N is divisible by 7 .

5 . How many zeros are there at the end of 100 !?
6. Show that $\log _{2} 3$ is an irrational number.
7. Prove or disprove: there are three consecutive odd primes, i.e., odd primes of the form $p, p+1, p+4$.
8. Prove that the set of positive rationals is countable by showing that the following function K is a 1-1 correspondence between the set of positive rational numbers and the set of positive numbers: $K(m / n)=p_{1}^{2 a_{1}} p_{2}^{2 a_{2}} \ldots p_{s}^{2 a_{s}} q_{1}^{2 b_{1}-1} q_{2}^{2 b_{2}-1} \ldots q_{t}^{2 b_{t}-1}$, where $\operatorname{gcd}(m, n)=1$ and the prime power factorization of m and n are $p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{s}^{a_{s}}$ and $q_{1}^{b_{1}} q_{2}^{b_{2}} \ldots q_{t}^{b_{t}}$ respectively.

