TUTORIAL SHEET 12

1. A polynomial $p(x)$ of degree n over a field F has at most n roots. But it does not need to have n roots, nor it must have roots at all (Recall that F_{p} denotes the field $\{0,1,2, \ldots, p-1\}$ for a prime p).

- Write all polynomials in F_{2} having no roots over F_{2}.
- Write all polynomials in F_{3} having no roots over F_{3}.
- Find a polynomial $p(x)$ which has roots over F_{3}, but not over Z, the set of integers.

2. In our exposition of secret sharing, we always set the secret to be $P(0)$, i.e. the constant term of the polynomial P used to generate the keys in the field F_{q}.

- Could the scheme be generalized to have the secret chosen to be $P(k)$ for k such that $0<k<q$?
- More concretely, suppose now that $q=7, k=2$ and P has degree 2. Given $P(1)=5 ; P(3)=6, P(4)=5$, use Lagranges Interpolation to recover the secret $P(k)$.
- Finally, suppose $q=7, k=0$ and P has degree 2, but this time you are given $P(1)=3 ; P(3)=4 ; P(4)=2$. Use Lagranges Interpolation to recover the secret $P(0)$. Now, can you see why $P(0)$ is a good choice for the secret?

3. A secret sharing scheme is k-secure if and only if any group of k or fewer people has probability at most $1 / q$ of recovering the secret, where q is the number of possible choices for the secret (this means that the best strategy such a group has is to guess the secret at random). In the typical secret sharing scheme, the secret is $P(0)$, the value of a certain degree k polynomial (that we construct) at 0 . Suppose that, instead, the secret is $P(0), P(1)$ (the values at both 0 and 1). Is this scheme still k-secure? Prove your answer.
4. In this question we will go through an example of error-correcting codes. Since we will do this by hand, the message we will send is going to be short, consisting of $n=3$ numbers, each modulo 5 , and the number of errors will be $k=1$.

- First, construct the message. Let $a_{0}=4$ and $a_{1}=3, a_{2}=2$; then use the polynomial interpolation formula to construct a polynomial $P(x)$ of degree 2 (remember that all arithmetic is mod 5) so that $P(0)=a_{0}, P(1)=a_{1}$, and $P(2)=a_{2}$; then extend the message to length $N+2 k$ by adding $P(3)$ and $P(4)$. What is the polynomial $P(x)$ and what are $P(3)$ and $P(4)$?
- Suppose the message is corrupted by changing a_{0} to 0 . Use the Berlekamp-Welsh method to find a polynomial $g(x)$ of degree 2 that passes through 4 of the 5 points. Show all your work.

