COL 202

TUTORIAL SHEET 11

1. Solve the following recurrence relations:

- $a_{r}^{2}-2 a_{r-1}^{2}=1, a_{0}=2$.
- $r a_{r}+r a_{r-1}-a_{r-1}=2^{r}, a_{0}=273$.
- $a_{r}^{2}-2 a_{r-1}=0, a_{0}=4$.
- $a_{r}=\sqrt{a_{r-1}+\sqrt{a_{r-2}+\cdots}}, a_{0}=4$.
- $a_{r}-r a_{r-1}=r!, r=1$.

2. Solve the recurrence relation $T(n)=n T^{2}(n / 2)$ with initial condition $T(1)=6$ when $n=2 k$ for some integer k. Hint: Let $n=2^{k}$ and then make the substitution $a_{k}=$ $\log T\left(2^{k}\right)$ to obtain a linear non-homogenous recurrence relation.
3. Show that the recurrence relation

$$
f(n) a_{n}=g(n) a_{n-1}+h(n)
$$

for $n \geq 1$ with $a_{0}=C$ can be reduced to a recurrence relation of the form

$$
b_{n}=b_{n-1}+Q(n) h(n)
$$

where $b_{n}=g(n+1) Q(n+1) a_{n}$, with $Q(n)=(f(1) f(2) \ldots f(n-1)) /(g(1) g(2) \ldots g(n))$. Use this to solve the original recurrence relation to obtain $a_{n}=\frac{C+\sum_{i=1}^{n} Q(i) h(i)}{g(n+1) Q(n+1)}$.
4. Use Q3 to solve the recurrence relation $(n+1) a_{n}=(n+3) a_{n-1}+n$, for $n \geq 1$ with $a_{0}=1$.
5. Show that if $a_{n}=a_{n-1}+a_{n-2}, a_{0}=s$ and $a_{1}=t$, where s and t are constants, then $a_{n}=s f_{n-1}+t f_{n}$ for all positive integers n where f_{n} is the $n^{\text {th }}$ fibonacci number.

6 . Solve the simultaneous recurrence relations

$$
a_{n}=3 a_{n-1}+2 b_{n-1}, b_{n}=a_{n-1}+2 b_{n-1}
$$

with $a_{0}=1, b_{0}=2$.

