TUTORIAL SHEET 10

1. Find a recurrence relation for the number of ternary strings of length n that contain either two consecutive 0 s or two consecutive 1 s .
2. Find a recurrence relation for the number of bit strings of length n that contain the string 01.
3. Find the recurrence relation satisfied by R_{n}, where R_{n} is the number of regions that a plane is divided into by n lines, if no two of the lines are parallel and no three of the lines go through the same point.
4. Let A_{n} be the $n \times n$ matrix with 2 's on its main diagonal, 1 's in all positions next to a diagonal element, and 0 's everywhere else. Find a recurrence relation for d_{n}, the determinant of A_{n}. Solve this recurrence relation to find a formula for d_{n}.
5. Let $S(m, n)$ denote the number of onto functions from a set with m elements to a set with n elements. Show that $S(m, n)$ satisfies the recurrence relation $S(m, n)=$ $n^{m}-\sum_{k=1}^{n-1} C(n, k) S(m, k)$ whenever $m \geq n$ and $n \geq 1$, with the initial condition $S(m, 1)=1$.
6. Find a recurrence relation for the number of strictly increasing sequences of positive integers that have 1 as their first term and n as their last term, where n is a positive integer.
7. Find a recurrence relation for the number of ternary strings that do not contain two consecutive 0 s or two consecutive 1 s .
8. Find a recurrence relation for the number of ternary strings that contain two consecutive symbols that are the same.
