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ABSTRACT

We consider the online problem of scheduling jobs on un-
related machines so as to minimize the total weighted flow
time. This problem has an unbounded competitive ratio
even for very restricted settings. In this paper we show that
if we allow the machines of the online algorithm to have ¢
more speed than those of the offline algorithm then we can
get an O((1 + e~ 1)?)-competitive algorithm.

Our algorithm schedules jobs preemptively but without
migration. However, we compare our solution to an offline
algorithm which allows migration. Our analysis uses a po-
tential function argument which can also be extended to
give a simpler and better proof of the randomized immedi-
ate dispatch algorithm of Chekuri-Goel-Khanna-Kumar for
minimizing average flow time on parallel machines.

Categories and Subject Descriptors
F.2.2 [ANALYSIS OF ALGORITHMS AND PROB-

LEM COMPLEXITY]: Nonnumerical Algorithms and Prob-

lems—Sequencing and scheduling

General Terms

Algorithms, Performance

Keywords

Scheduling, flow-time, competitive ratio, approximation al-
gorithms

1. INTRODUCTION

The problem of online scheduling of jobs on multiple ma-
chines has been well studied both in the online and schedul-
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ing communities. A natural measure to consider in this set-
ting is the weighted sum of flow times of the jobs, where the
flow time of a job is defined as the difference in the comple-
tion time and the arrival time (also known as release time)
of the job. However, most of the research in this area has
addressed only the setting of identical multiple machines.

Garg and Kumar [11] were the first to consider the prob-
lem for related machines. This is the setting when machine i
has speed s; so that it finishes one unit of processing in time
1/s;. Garg and Kumar [10] gave an O(log® P)-competitive
algorithm for this problem which has recently been improved
to O(log P) [1].

For the more general setting of unrelated machines when
the time required to process a job j on machine ¢ equals p;;
(and this could be an arbitrary quantity), [12] showed that
no competitive algorithm is possible. Their example which
showed that no online algorithm can be competitive used
only 3 machines and jobs that had unit processing time on
2 of the 3 machines.

In light of this strong negative result we ask ourselves
if it is possible to obtain a bounded competitive ratio by
providing the online algorithm with slightly more resources
than those of the offline algorithm. In particular, we assume
that each machine of the online algorithm has € more speed
which implies that the work that the offline algorithm can
do in 1 unit of time, will require (1+¢€)~! time for the online
algorithm. In this setting we are able to show a simple online
algorithm that is O((1 + e~ ')?)-competitive.

Our paper also highlights the immense additional power
that a small augmentation of speed can provide to the on-
line algorithm. In particular, we get the same competitive
ratio for weighted flow time (every job has a weight which
may depend on the machine on which the job is scheduled).
The schedule that our algorithm provides is non-migratory
— a job once it is scheduled on a machine cannot migrate
to another machine. However, the offline adversary can be
stronger, it can migrate jobs from one machine to another.
This shows that speed can also offset the benefits that might
accrue with migration. One another nice property of our
algorithm is that it dispatches a job to the appropriate ma-
chine as soon as the job arrives. We would like to point out
that in the absence of speed augmentation we do not even
know of any approximation algorithm (with non-trivial guar-
antees) for the problem of minimizing flow time on unrelated
machines [13].

The key technical contribution of this paper is a simple
potential function argument that we believe can be applied
to other problems as well. In particular, we provide a simple



proof of the randomized immediate dispatch algorithm of
Chekuri et.al. [9] for minimizing average weighted flow time
on parallel machines which also improves the competitive
ratio from O(e™?) to O(e™2).

Related Work Speed augmentation in online scheduling
problems was first considered by Kalyanasundaram and Pruhs
[14] who used it to get improved on-line algorithms for min-
imizing average (unweighted) flow-time on a single machine
in the non-clairvoyant setting. They obtained an O(¢™')-
competitive algorithm for this problem. Without resource
augmentation no online algorithm for this problem can be
Q(log n)-competitive [17]. Bechetti and Leonardi [7] showed

that the randomized multi-level-feedback algorithm is O(log n)
competitive for single machines and O(log n log P)-competitive

for parallel machines in the non-clairvoyant setting. Bansal
and Pruhs [5] showed that in the clairvoyant setting some
well-known algorithms like SRPT and Shortest Job First are
e '-competitive for the L, norm of flow-time for all values
of p> 1.

There has been considerable work on minimizing average
(unweighted) flow-time on parallel machines [16, 3, 4, 2] —
these results established O(min(log P, log n/m))-competitive
algorithms for this problem. Leonardi and Raz [16] also
showed that no randomized on-line algorithm can do bet-
ter. With e-resource augmentation, Chekuri et.al. [9] showed
that the immediate dispatch non-migratory algorithm of Azar
et.al. [2] is O(¢™!)-competitive for all L, norms. They also
showed that the followling simple stateless algorithm has
competitive ratio O( 10535 ) for the average (unweighted) flow-
time : when a job arrives, assign it to a machine picked uni-
formly at random. As mentioned above, Garg and Kumar
showed that there cannot be a bounded competitive ratio if
we make the model slightly more by adding the restriction
that each job can go only on a subset of machines.

For the problem of minimizing weighted flow time on par-
allel machines, Chekuri, Khanna and Zhu [8] showed that
no online algorithm can have a bounded competitive ratio.
Ours is the first non-trivial competitive ratio for minimizing
weighted flow-time when there are more than one machine.

More recently, Bansal et. al. [6] show that speed aug-
mentation can help us overcome the hardness imposed by
non-preemption [15]; they show a polynomial time O(1)-
approximation algorithm for minimizing flow time on a sin-
gle machine with O(1) additional speed when no preemption
is allowed.

2. PRELIMINARIES AND THE SCHEDUL-
ING ALGORITHM

We consider the on-line problem of minimizing total weighted

flow-time on unrelated machines. Job j is released at time
r; and requires p;; units of processing if scheduled on ma-
chine i. Further, job j has a weight w;; if it is scheduled
on machine 3. Let d;; = w;;/pi; denote the density of job j
on machine i. We shall use A to denote the schedule pro-
duced by our algorithm, and O the optimal schedule OPT.
We assume that a machine in our algorithm has (1 + ¢’)
more speed than the corresponding machine in OPT. Let €
be such that (14¢)> =1+¢'.

2.1 Fractional Flow time

In the following sections, we shall compare the fractional
flow-time of our algorithm to that of the optimal schedule.

Let x; ;: be a variable between 0 and 1 which tells us the
extent to which job j is scheduled on machine 7 in the period
[t,t +1). x4 = 1 denotes that all of the t"" time-slot on
machine ¢ is occupied by job j. The (weighted) fractional
flow-time of job j is then defined as

1 t—r
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The fractional flow time of a schedule A is denoted by F*
and equals the sum of the fractional flow times of the jobs.
The following three claims follow as an easy consequence of
the definition of fractional flow time.

CLAIM 2.1. In any schedule the fractional flow time of a
job would be at most its (integral) flow time.

CrLamM 2.2. To minimize fractional flow time, each ma-
chine should process the jobs assigned to it in decreasing or-
der of density.

In our schedule, A, job j would be assigned entirely to
one machine, say 7. In this scenario Fj, as defined above, is
equivalent to

WijPij *~
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where p;‘]\-(t) is the remaining processing time of job j on
machine ¢ at time ¢ in schedule A. In fact, in the above
expression the first term is at most the second term [10].
Let PA = Zj w;;pi; denote the total weighted processing

time of schedule A. Hence, F** > P4,

2.2 Relation between fractional and integral
flow time

Let B be a non-migratory schedule. Consider a job j
scheduled on machine 4 in this schedule. Let 8; be the time
at which a (14 ¢)™" fraction of job j is completed. Then
the fractional flow time of j is at least ew;;(8; —r;)/(1+¢€).

Suppose we increase the speed of each machine by a factor
(1 +¢€). We modify the schedule B to get a schedule B’ for
these faster machines as follows. Job j is scheduled in the
first pi;/(1 4 €) slots of the p;; slots in which this job is
scheduled in B. Hence the completion time of j in B’ is
B; and the flow time is w;;(8; — r;). This implies that for
each job, its flow time in B’ is less than (1 + &™) times its
fractional flow time in 5.

Henceforth, we would only be interested in the fractional
flow time of A.

2.3 The Algorithm

Each machine maintains a queue of jobs assigned to it.
At time ¢ let A;(t) be the set of unfinished jobs scheduled
on machine ¢ in our algorithm. We can think of OPT also
as maintaining a queue of jobs for each machine. When a
job arrives at time t, it goes to the queue of the machine on
which it eventually gets processed. Let O;(t) be the set of
unfinished jobs scheduled on machine i in OPT.

Let p;-‘\(t) be the residual processing time of job j at time
t in our algorithm and pf(t) be the corresponding quantity
in OPT.



Suppose a job k arrives at time ¢. For each machine ¢, we
compute the quantity
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Job k is assigned to the machine 4 for which Q(i, k) is
minimum. This specifies the rule for assigning a job to a
machine. Since each machine processes jobs assigned to it
in decreasing order of density, the quantity Q(i, k) measures
the increase in the flow-time of jobs which are in the queue
of machine 4 (at time ¢) if we assign k to machine i. Note
that there is no increase in the flow-time of jobs of density
more than d;x, but the flow time of jobs whose density is
less than or equal to d;x increases by p;r times their weight.

3. ANALYSIS

Our analysis relies on a potential function argument. De-
fine
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and let & = ZZ ®,. P is zero both at the start and the end of
the algorithm. ®(¢) is continuous at all times other than at
the arrival times of jobs. ®(t) is also differentiable almost-
everywhere (the slope changes only when a job finishes).

We show that the total decrease in ® is at least e(F4 —
PA/2 — F®") (Lemma 3.1). We also show that the total
increase in ® is at most F”T (Lemma 3.2). Since total de-
crease in ¢ equals the total increase in ¢, we have,

e(FA—F® — p*/2) < Decrease in ®

= Increase in ®
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Since F* > P4, this implies
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‘We now prove the two lemmas. Let t1 < ts < ---
the times at which jobs are released.

LEMMA 3.1. The sum of the decreases in ® in the open
intervals (ty,ti41), VI is at least e(FA — FT).

ProoOF. From time t to t + 6 we calculate the decrease
in ®;. Let our algorithm schedule job a on machine ¢ and
OPT schedule job b. Note that a is the highest density job in
A;(t) while b would be the highest density job in O;(t). We
consider 2 cases depending on which of a,b has the higher
density.

We first consider the case when a has higher density. The
residual processing time of a decreases by 6(1 + ¢) and the

decrease in ®; due to this equals
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We assume § small enough so that §(1+¢) < p;'(¢) and hence
the increase in ®; is at least the first term. Similarly, the
residual processing time of b decreases by ¢ and the decrease
in ®; due to this equals
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which is greater than
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assuming § < p§ (t).

There is an additional decrease in ®; due to the fact that
the residual processing times of a and b decrease simultane-
ously. This additional decrease is in the term —pz(t)-pd (t)-
di and equals (1 + 6)(52d¢b‘ Therefore the total decrease in
®; is at least
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We next consider the case when b has higher density. The
decrease in ®; due to the decrease in the residual process
time of a is now, assuming d(1 + &) < p7A(t), at least

s(1+e) | > dijpit(t = > dypi(t) = Y diaps (t
JEA;(t) JEO, (t) JEO;(t)
dij Sdm dij >dm

which is greater than

Z dljpj

JEA;(t)

0(1+€)

Z dl]pj

JEO;(t)

Similarly, the residual processing time of b decreases by § and
the decrease in ®; due to this, again assuming § < p? (t), is
at least
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Hence the total decrease in ®; is, once again, at least
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This implies that the total decrease in ® during (¢, t14+1)



is at least
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Adding over all [, and using (1), we get that the total
decrease in ® during these intervals is at least e(F4 — P4 /2—
F*N). O

The potential function increases when jobs arrive.

LEMMA 3.2. The total increase in ® at times t;, V1 is at
most the fractional flow time of OPT.

PrOOF. Let k be a job which arrives at time t and is
scheduled by A on machine 1 and by OPT on machine 2.
The increase in ®; equals
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Similarly increase in ®» is
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Note that the quantity in expression (2) equals Q(1,k)
while expression (4) equals —Q(2, k). Our choice of machine
to schedule job k implies that (2) 4+ (4) < 0. Since (3) < 0,
the total increase in ® is at most (5). But (5) is also the
increase in the fractional flow time of OPT due to the arrival
of job k. Hence total increase in ® is at most the fractional
flow time of OPT. [

4. COMPARISON WITH MIGRATORY OP-
TIMUM

So far we have compared our algorithm with a non-migratory

optimum. We now show that in fact our algorithms are also
competitive with respect to a migratory optimum, mOPT. Let
pg(t) denote the residual processing time of job j on ma-
chine ¢ at time ¢ in OPT.

We need to re-analyse the increase in ® when a job arrives.
Let k£ be the job which arrives at time ¢ and is scheduled on
machine 1 by A, while mOPT sends a; (3, a; = 1) fraction
of k to machine i. The increase in ®; due to job k being
scheduled on machine 1 by A is as before and equals
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The increase in ® = ZI ®; due to «; fraction of k being

scheduled on machine ¢ in mOPT equals
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Note that we are ignoring the change in ®; due to the fact
that job k is assigned on machine 1 by our algorithm and to
an extent a1 by OPT. Accounting for this would only decrease
D;.

Our choice of machine to schedule job k implies that (6)+
(8) < 0. Since (7) < 0, the total increase in ® is at most
(9). But (9) is also the increase in fractional flow time of
mOPT due to the arrival of job k. Hence total increase in ®
is at most the fractional flow time of mOPT. The rest of the
analysis continues as before and hence

F.A §2(1+671)Fm0PT

S. A SIMPLER (AND BETTER) ANALYSIS
OF THE RANDOMIZED ALLOCATION

ALGORITHM FOR PARALLEL MACHINES

In this section, we consider the setting of parallel identical
machines. Consider the following simple algorithm : when
a job arrives assign it randomly to one of the machines. For
a particular machine, we follow the highest-density first rule
to schedule the jobs assigned to this machine.

We use the same definitions as in Section 4. Note that
Ai(t), p(t), st and ®(t) are random variables. We first
observe that it is easy to characterize OPT if we allow it to
migrate jobs and process a job simultaneously on multiple
machines (this can only reduce its flow-time).

LEMMA 5.1. There is an optimal solution which distributes
each job evenly on all the machines.

PRrROOF. We can think of the m machines as a single ma-
chine with m times the speed. View the optimal solution
as a schedule on this single machine. We can get back an
optimal solution for the m machine case by splitting each
unit time interval in this schedule into m equal parts. [

Suppose job k arrives at time ¢t. We would like to compute
the increase in E[®]. Fix all the random choices before job
k. So ®(t) is now a known quantity. Suppose we send k to
machine 1 (this happens with probability 1/m, where m is
the number of machines. Then the increase in ®; is at most
Q(1,k). Hence, the expected increase in ® due to scheduling
of job k by our algorithm is (1/m) Y, Q(i, k).

On the other hand, the increase in ® due to OPT scheduling
1/m fraction of job k on each machine equals (8)+(9) with
a1 = az = -+ = am = 1/m. This in turn is equal to
—(1/m) >, Q(i, k) plus the increase in the fractional flow
time of OPT due to arrival of job k.

Therefore, the expected increase in ® due to the arrival
of job k is at most the increase in the fractional flow time
of OPT. Since this is true for all random choices made prior
to job k, we can remove the conditioning on the random
choices made before job k. Hence, we have that the increase
in E[®] is at most the increase in flow time of OPT.



Since,

e(F* — F®" — P*/2) < Decrease in ®

we have that

e(E[F* — P*/2] — F*") < Decrease in E[®]

The rest of the argument proceeds as before and this lets us
claim that

6.
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